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-signal to noise, phase aberration and monochromaticlty were studied.
For incoherent light, thinning down to 6% of the full aperture produced
no noticeable degradation. The arrays are easy to design and degrade
gracefully when large fractions of the elements fail. The result of
this study can be found in the Interim Scientific Report.

The second topic studied, the one disucssed in this report, was the
maximum entropy (ME) image reconstruction method. We formulate the
problem from a fundamental point of view based on tile physical statis-
tics of the problem. The most probable object consistent with the
measured signal image data and the noise is selected as the estimated
object. The entropy is the logarithm of the probability. The con-
strained entropy is analogous, we note, to the free energy of statisti-

cal mechanics and we utilize this analogy to consider the problem of
fluctuations, or noise in a natural way. The degree of confidence in
tie ME estimate is derived in a general manner by expanding the object
probability distribution near the maximum as a multivariate Caussian
and making a principal axis transformation. The set of variances
thus derived are projected back to tile spaq 'of the object estimates
as confidence regions. Several computer exa~nples of thle ME method in llII
one and two dimensions are given.
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SECTION 1

INTRODUCTION

This is the final report for a three-year research program on

imaging with thinned sparse arrays of antennas or apertures. In the

last year we have studied the foundations of the maximum entropy (ME)

estimation method and its application to the restoration and super-

resolution of images that have been degraded by undersampling and by

the finite aperture of the sparse array. Extensive computer simulations

were performed on one- and two-dimensional image signals to test the

theoretical formulations of ME. This method of approach gives the

results a certain generality in wavelength and physical scale that

would have been extremely time consuming to obtain using the data

from direct physical experimentation.

The simulations of imaging with sparse arrays provided important

and surprising results. We summarize here the important points of

our previous two-year study of these arrays. Further details can be

found in the annual report for this contract (June 1979). Very high

resolution imaging systems, regardless of wavelength, require large

apertures with high resolution, low side lobe level, and high gain.

These apertures are often considered to be technically and economically

infeasible. We investigated the efficacy of using very sparse arrays

of randomly placed small antenna elements in imaging systems. The

properties of these arrays are established in antenna theory. What

we have done is to make the first demonstration of their application

in imaging systems. Computer simulation studies were made for coher-

ent, partially coherent, and incoherent imaging. These were done

using various conditions, including variable signal-to-noise ratio

and phase aberration, but with monochromatic illumination. We showed

that, for incoherent imaging, a large degree of thinning down to 6'

of the number of full array elements (4096) produces image quality

comparable to that produced by the full array. For broad-band

13
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polychromatic incoherent imaging, even larger degrees of thinning,

down to 3%, were similarly effective. The fracional degree of thinning

allowable for incoherent imaging is in principle, inversely propor-

tional to the square root of the number of elements in the full array,

which is equivalent to the number of elements resolved in the full

array. The arrays, which are easy to design, degrade gracefully

when large fractions of the elements are removed. For coherent

imaging applications, random arrays do not offer significant advantages

over full arrays.

The body of this report describes the results of the last

contract year's work on the ME estimation method. Both the theory and

application are described along with the results of computer simula-

tions on one- and two-dimensional images. The meaning and nature of

the ME method is discussed in Section 2, where the meaning of entropy

in this problem is clarified. A generalization is also presented

that reconciles the two contending forms of entropy seen in the ME

literature by showing them to be special limiting cases of a more

general entropy, based on quantum statistics. The actual physical

nature of the source and measurement apparatus determines the appro-

priate limiting form of entropy. The commonly used information

theoretic entropy is shown to be one such limiting form.

An analogy is made between the ME problem and the free-energy

minimization problem, familiar in statistical mechanics. This

analogy allows fluctuation noise and signal-to-noise concepts to be

introduced naturally into the theory and practice of the method via

an effective noise temperature, if the noise or signal-to-noise is

known a priori by independent measurement from an ensemble of

measurements.

There is a closed-form solution to the ME problem in one dimension

for the case of Gaussian statistics. In that situation, matrix

inversion for image signals of small extent or recursion for larger

ones can readily be used to solve the problem. No closed-form

14



solution exists for any other case, and iterative algorithms must be

employed in digital computations. We studied two methods: the natural-

iteration method, which guarantees convergence, and the much faster

Newton-Ralphson method which does not. Examples of one- and two-

dimensional and computer simulations of restoration and superresolution

are given in Section 4. No approximation was needcd for nonseparable

two-dimensional point-spread functions.

A question rarely asked in ME estimation work is what degree

of confidence should be ascribed to the estimates. We develop in

Section 5 a general method for the calculation of the degree of confi-

dence in the ME estimates, suitable for two dimensions and not

restricted to Gaussian, independent statistics. This method is

applied to a set of ME estimates consisting of estimated objects,

all differing in the degree of superresolution and differing further

in the degree of noise assumed. The multidimensional (49 dimensional

in our example) nature of the results makes a two-dimensional graphical

representation of the results difficult, but we have chosen to

attempt it in order to supplement a purely algebraic statement.

As a corollary of our study and understanding of the entropy

in the ME method, we noticed that many authors, while recognizing

the importance of the Poisson statistical regime for imaging and

communications, have incorrectly evaluated the probabilities and

channel capacities for the Poisson distribution. They incorrectly

used the wrong entropy or information expression for this iase.

15



SECTION 2

MAXIMUM ENTROPY ESTIMATION: THE GENERAL POINT OF VIEW

Maximum Entropy has been used in various forms and for various

ends in recent years. Applications ranging, for example, from radar

filter formation to beam forming, from seismic spectral estimation,

to astronomical imaging and evet, to economic forecasting, have all

been enriched by this general technique. The particular techniques

and philosophical points of view vary widely among the several

disciplines, each working independently and publishing in specialized

journals.

The interpretation we present, which we believe to be the

most general and which includes others as special more limited cases,

is based on two considerations. Any image, measured as signal,

pattern, or spectrum, whatever the variables represent, is a

necessarily degraded version of the true object. It is necessarily

degraded because a real measurement system has limited bandwidth

or finite point impulse response function, because the time sample is

finite, and possibly because the measurements were undersampled.

Furthermore, noise cannot be ignored.

Many different possible object patterns (whatever the object

variables represent) all differ in detail, but can produce the same

measured image pattern. This ambiguity can be resolved by applying

the ME method. In our interpretation, the second consideration is

that a probability is assigned to each possible pattern and the

most probable pattern is chosen as the estimated or restored object.

Patterns are assigned probabilities based on the physics and statistics

of the immediate problem. The entropy is understood to mean the

logarithm of the probability. So to find a maximum of the entropy

is to find a maximum of the probability.

From this point of view ME is a method to estimate the true

object (or its transform) by maximizing its entropy subject to the

17

..l .LDIN P i PAGE BLb" -MOT 7 ",.. .



measured image data constraints. In the next section we develop this

idea in an analogy between ME and the well known, and much practiced

statistical mechanical principle of the minimization of the free energy

and derive some useful benefits from the analogy.

Here, some comments are in order about a much repeated "principle

of maximum entropy" put forward by Jaynes which is often used to justify

the ME method. In the particular form it is often quoted in ME,

exploiting the relationship between information and entropy, it

states that the ME estimate is the least prejudiced one bringing no

additional information from tacit structures and assumptions. Any

such implicit features would decrease the entropy from its maximum.

We do not need to employ a new principle to formulate the ME problem.

we maximize the probability and, following Boltzmann, we identify the

logarithm of probability with the entropy.

An information theoretic point of view can enrich and sharpen

our understanding of the relationship between the observer and the

observed, the knower and the known, but it has sometimes been subject

to misuse and misunderstanding. The information theoretic entropy of

Shannon, -f log f, is often employed inappropriately. This form is

appropriate only when there is no underlying a priori probability

distribution departing from an equal a priori weighting. For example,

it would be appropriate for the ubiquitous gaussian case but not so

for the poisson case.

These considerations regarding the entropy expression have been

developed at length in our paper "Maximum Entropy Image Restoration:

1. The Entropy Expression," published in the Journal of the Optical

Society of America and reprinted in Appendix A. The interested

reader is referred there for a detailed exposition; only a summary is

given here.

There are two schools employing two different forms of entropy

in the ME problems they are solving. We call them the "log B" and

"-B log B" schools, where B is the local or instantaneous brightness,

18



power, intensity, or their spectral counterparts. We derive these

two expressionf. as limiting cases of a more general entropy forumula

based on the underlying properties and statistics of the physical

source and of the measurement process. In the case of photon or

electromagnetic signaling or imaging, the Bose-Einstein statistics

and in the case of electrTons, the Fermi-)irac statistics are

employed. The n quantum mechanical particles comprising the bright-

ness are distributed over z degrces of freedom as calcualted by

these statistics. The number of degre.-, o freedom is a function

of both the source and the measurement and estimation process. It

can be understood in phase space in terms of the ratio of the sizes

of the detection volume to the coherence volume of the particles.

The number of degrees of freedom is an extension of the familiar

idea of the time-bandwidth product to include the conjugate variables

of space-reciprocal space as well. The entropy to be maximized is

the logarithm of the probability as given by the physical statistics

of the problem, following the original meaning of entropy as given by

Boltzmann and Planck. The entropies log B and -B log B result in the

limit n>>z -I and n- z, respectively. When n is interpreted as an

average n over an ensemble, we find in addition the log B expression

when n>z = 1. The Burg form used in spectral estimation, for

example, is log B. The distribution function for this case is tile expo-

nential in intensity, or Gaussian in complex amplitude. Shannon's

entropy expression is shown to be, in the same way, a special case

of the more general result and is appropriate for his special interest,

namely, the z = 1 Gaussian complex amplitude case of equal a priori

probabilities.

We show in Figure 1, by way of illustrating the n/z concept with

a familiar example, a plot of the wavelength-temperature dependence

of a blackbody for given average number of photons per mode (or per

degree of freedom) n/z.
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Figure 1. Wavelength-temperature dependence of a blackbody
for given average numbers of photons per mode

(or per degree of freedom), n/z.

The ME method, in summary, may be viewed as a nonlinear inversion

or deconvolut ton method for estimation from partial and noisy data.

It can be use-d to extrapolate or interpolate in the spaces of the

measured variables or their conjugates, as in Fourier transform

.paC. Since it can achieve an inversion beyond the algebraically

allowable spatial, temporal, or spectral limit of the measured data,

it can be said to produce a superresolutton. In the next sections

we describe our method of solution, describe a useful thermodynamic

analogy, and give some examples in one and two dimensions. Finally,

we address the quest ion of the degree of confidence in the estimates.
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SECTION 3

THE ME METHOD AND ITS INTERPRETATION

In this section we describe our particular formulation of the

ME method and present a useful thermodynamic interpretation in terms

of the free energy. This interpretation permits us to deal with the

problem of fluctuations or noise in a natural way. The Burg method

and the relationship of ME to the Bayesian point of view is

discussed.

A. FORMULATION OF THE ME PROBLEM

We begin with a set of measurement data in one or more dimensions,

a known noise or signal-to-noise ratio (S/N), a known instrumental

and transmission path point-spread-function for measured spatial

variables, and impulse response function for measured temporal

variables. If we are measuring or estimating spectra in the

reciprocal or conjugate space of spatial or temporal frequency, we

must then know the detailed behavior of the band-limited transfer

function or time-limited sampling function of the instruments. The

goal of the method will be to estimate a finer resolution version of

the original measurement datum (or its spectra), or equivalently, an

extrapolated version of the original measurement datum (or its spectra.)

An example from image estimation will help to illustrate these ideas.

Suppose an unknown object {Ob} convoluted )with a known

instrumental point spread function (PSF) is observed as an image

signal {1}

We may write

{Ob ® PSF = {I} (1)

21



Naturally, there are fewer independent variables or resolution

elements (space-spatial frequency product elements) in the image

than there are potentially in the object. There are many possible

objects, that could produce the same image. There is a many-to-one

mapping of the variables that might describe the object to the

variables that describe the image signal. One ME problem is to

invert Eq. 1 to get an estimate of the object {Ob} with some desired

degree of resolution or superresolution. The carrot ^ symbol denotes

estimates.

Inversion is possible using linear methods, but only up to the

band limit, resolution limit, or, the uncertainty limit. The

problem is that of inverting singular matrices or dividing by

zeros, or near zeros. All linear methods are basically equivalent in

sharing this difficulty.

The classical analysis by Slepian and Pollock showed that at

and beyond the resolution or uncertainty limit the eigenvalues fall

rapidly to neglible near-zero values. Thus, any finite noise, whether

physical noise in the signal or numerical noise in the digital computer,

renders superresolution impossible by linear inversion schemes. As

a nonlinear estimate method, ME diminishes these difficulties. Like

other nonlinear methods, such as the iterative method of constrained

positivity, ME can achieve superresolution estimates in the presence

of noise. (We incorporate a positivity condition in our ME formalism

in a natural non ad hoc way.)

Only the one-dimensional liE problem for the case of Gaussian statis-

tics has a closed-form solution (discovered by Burg). This problem can

be solved by direct matrix inversion, although recursion schemes are

usually employed for speed and economy of calculation. In higher dimen-

sional problems, such as two-dimensional pictorial imaging or synthetic

aperture radar, no closed-form solution exists. Furthermore, for any

statistics other than Gaussian, no closed-form solution exists. For

example, for Poisson statistics, the problem must be solved numericallv.
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Our formulation of the ME problem is to assign a probability to each

possible object, based on the physical statistics of the problem

at hand, and choose the most probable object as the estimate. In

practice, we do not enumerate the probability for each object that

agrees with the constraints, but determine the most probable object

by the methods of analysis. But, in principle, it could be done

that way.

According to Boltzmann's identification of entropy S and

probability P (see Appendix A) P being the normalized number of ways

something can occur, the degeneracy

S = log P . (2)

We see that seeking the maximur probability object estimate

is equivalent to seeking the maximum constrained entropy:

+S constrainedP = e (3)

We write the constraint in the form of the squared difference between

the given measured data and the estimate to be found. By subtraction,

the constraint compares the calculated estimate with the original

measured data. Before comparison, the two quantities must be in, or

be transformed into, the same space and compared on the same support

elements. For example, we may compare the superresolved object

estimated on a fine mesh with the coarser mesh measured image by

convoluting the estimate with the known point-spread function of

the measurement technique. This procedure reduces the number of

independent coordinates in the estimate and places it on the same

coarse mesh of the image for comparison. Thus, the estimate object

is degraded by the same measurement techniques that produced the actual

image. This derived "image" is compared with the actual image in the

constraint term. Continuing our example, we write
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2E ([I} - PSF i,k {Ob}) (4)
i k

In the same way, we can constrain the estimated object to agree with

an image measured in Fourier transform space. This situation would

arise, for example, in the detection of the partial coherence visi-

bility function as is done in radio telescopy. Here we would compare

the transform of the estimated object, degraded by the transfer or

filter function (the modulation transfer function (MTF)) of the

measurement technique, with the actual measured image transform.

Again, the estimated object is degraded in the same fashion as the

actual image was. We would then have the constraint

E = J (Ik - [Fourier Transform (i,k) {Obi}] MTFk)2  (5)
k i

where {I} and {Obl are in the reciprocal spaces of spatial frequency

(f ) and space (x), respectively. Other permutations of the trans-x

form relation are also possible in the constraint term. This constraint

term may be viewed as an error term, or a noise or error-tolerant
1

term. Wernicke and D'Addaria, utilized it in their formulation of

the ME problem with an arbitrarily chosen multiplier that was not

clearly interpreted. The constrained entropy to be maximized may be

written as

S({Ob}) = S({Ob}) - E({Ob,l} ) , (6)
constrained

where B is a Lagrange multiplier that is chosen so that the constant of

Eq. (4) is satisfied. The multiplier B determines the weight, or

importance, of the constraint. In general we can make 6 dependent on

i and multiply B inside of EI in Eq. (4); however, for simplicity we
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use a constant 1i = 1" The constraint term E may be viewes as an energy

term since it is a quadratic form; this is in analogy to physical systems

which often have quadratic potential and kinetic energies. We chose

this quadratic form to emphasize this analogy for a useful interpreta-

tion of the multiplier, and also for technical and mathematical reasons.

Because we want the energy to become small in our extremum problem,
n

any even function, such as the ab3olute value or E , where n is an

integer, would do. But the quadratic form makes an algebraic and

algorithmic simplification.

Maximizing the constrained entropy is the same as minimizing its

negative, and we minimize a function which we call 1F:

F = FE - S (7)

Equation 3 for the probability of the object may now be written

P = e (8)

Since maximizing the probability is the same as maximizing its

monotonic mapping by the logarithm, we minimize 1F (Eq. 7)

directly:

MIN F{Ob} = MIN(BE--) = MIN [({IV - PSF 0 {Ob}) - S]. (9)

To illustrate more explicitly, we can choose an explicit form for

the entropy such as S = + log {Ob} (suitable for Gaussian amplitude

statistics), or S = -{Ob}logfOb}(suitable for Poisson statistics as

we show in Appendix B). The convolutional PSF might be Gaussian or

(sin x)2 , depending on the details of the measurement conditions.
x 2 2

(We choose the (sin x)/x form in our later examples.)
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To minimize Eq. (2), we set the partial derivatives to zero,

F 0 (10)
3 fOb}

and solve for {Ob}.

These equations can be solved iteratively by a variety of techniques.

We have used a "natural iteration technique"2 developed by Kikuchi,

which guarantees convergence irrespective of the initial guess, and
3the Newtop-Raphson technique

B. A THERMODYNAMIC ANALOGY

When we examine Eq. 7, we note that it has the form of the

function that is minimized in the canonical ensemble treatment of

statistical mechanics. Using this analogy, we can go one step

further and call F (defined in Eq. 7) the free energy. In our

interpretation, we identify the constraint energy, Eq 4 or 5,

with the internal energy of the system, and 8 with l/T, the

reciprocal temperature. Therefore, in our formulation, of the ME

problem should really be called a Minimum-Free-Energy (MFE) problem.

One may call the entire expression, Eq 7, entropy or free energy,

depending on whether one views the system as closed or open, and

whether the problem is viewed from the microcannonical or cannonical

point of view. In any case, the same function is to be minimized.

The important point is that in either case the multiplier can be

associated with the concept of temperature and therefore fluctuation

or noise as we shall see below.

This analogy immediately indicates what value a should take

to satisfy the constraints. From statistical mechanics we know

that the system takes the state of the lowest energy at T = 0.

This means that the value of that satisfies the constraint is
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infinit v. When 0 0 (i.e., F- ) the entropy predominates in Eq 7;

thus the ob ject viables correspond to those values that maximize S

withmlut tlt constraints, thereby producing a flat featureless

di st tibut ion for the object . As 1++ increases, the F term increases

its contribution and is not at its lowest zero value.

Analogy with the statistical mechanics enables us to use the

r_ I at io0u

iF

li, s rclat iot can bI e iis'd as a check of nulnt.rica l computation.

Equat ionl 11 can be used ;is follows. I f we call expand F near T 0

( = ,') as

F = F -IF - 'IF. 2 (12)

t h en

S -- ;-T = F + 2TF +
,)T 1 2 (3

add

E = F + TS = F +TF+ ... (l')
0 2

Because we know 1 = 0 at 'r = ), Eq. 14 leads to F 0.
0

Equation 13 shows that F is the residual entropy, i.e., the entropy

value at T = 0. The behavior oi F and S near T = 0 is shown in

Figure 2.
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(a) (b)

Figure 2. Behavior of free energy and entropy at low temperatures.

(a) Normal behavior; (b) Apparent behavior in our form-

ulation due to suppression of a large constant positive

entropy term.

For the region of B we used in one of our examples, the

expansion (Eq. 12) does not hold exactly, and the relation was

F = - TI+ F1  (15)

with a small a. In this region, for example, it was numerically

verified that
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S = (l+ )TFI

(16)

and

E =aT F1

hold with a 0.05. The relations in Eq 16 are derived from the

thermodynamic relations, Eq. 11 and 14.

C. FLUCTUATIONS OR NOISE

Our thermodynamic analogy gives a further insight into the

problem of the meaning of the energy constraint term and its

multiplyer 3. Wernecke and D'Addario,
1 noted that if the measured

data values in the constraint are independent zero mean, random

variables with known a priori variances a3, the constraint E could

be written

EM (Estimated. - Measured. 2E u=ed.) = M ,(17)

the equality holding provided M is large. The computed trial

solutions for various multiplyers , to find the one that permits

Eq. 17 to be satisfied with "sufficient" accuracy. They note that

it might not be possible to satisfy Eq. 17 no matter how large 6 if

the measurements are too noisy or the variances {a } are assumed to
i

be unrealistically small. They give an estimate for a trial guess

for 0 from the case of a single meaqurement of the total object

intensity mI by setting aF/aOb = 0 (Eq. 10), and setting the difference

between measured and estimated values equal to a1)
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m (18)
2 (1+

which varies from zero to a maximum of one-half. They increase a to

satisfy "increasing accuracy" in Eq. 17, but no further rule or

interpretation is given.
4

Gull and Daniell, seemingly unaware or Wernecke and D'Addario's

1prior work , similarly assume the data to have Gaussian errors and2

note that then the term E (Eq. 17) is a X distributed statistic and

that the expected value of X2 is equal to the number of data values M.

They automatically increase in their iterative solution until this

equality is achieved. No interpretation of a is offered there to

relate it explicitly to the noise.

In thermodynamics the fluctuation of the energy in a canonical

ensemble is given by

E k T2Cv = k (19)
2

where we will, in our analogy, put Boltzmann's constant k = 1. The

specific heat CV is given by

CV = - = T -LS (20)

These two relations are general and do not depend on the assumption

of Gaussian independent error or noise fluctuation statistics, or

the validity of the equipartitioning of energy for the problem at

hand.
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If equipartition were to hold for the ME problem, we would have a

simple theory for the specific heat and the fluctuations. Equipartition

would indicate that the fluctuation or noise power is distributed uni-

formly among all the pixels, or mesh points, with 11(26) in each pixel,

each pixel being a degree of freedom in our present equipartition

analogy. Equipartition would hold if the quadratic energy term were

the only factor in the probability or free energy expression (Eq. 8):

M2 S 2

= e Ai ( i (21)

where A'is the difference between estimate and observation. We could

set

2
S(At)d 1 (22)

and have n simple relationship between 6 and the noise by relating A.

to the noise. We would employ a single 6 for simplicity rather than

separate multipliers 6.. But the nontrivial entropy S in Eq. 8 spoils
1

the relation (Eq. 21) for equipartioning except for special asymptotic

limiting cases:

M2

P = e -6  (Ai e + (23)

In general, we must numerically calculate CV, which is 6 dependent,

and then use Eq. 19 to relate the value of 8 to the fluctuation or noise

7E. The numerical calculations are required because the series expan-

sions do not hold exactly as we pointed out in Eq. 15 and we have not

yet developed a theory of the specific heat for this problem. We

emphasize that the relation, Eq. 19, does not depend on the noise being

of the nature of Gaussian-independent fluctuations, but is very general.
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Some comments may clarify the meaning of the energy fluctuation

6E (Eq. 19). It is important to note that although the individual terms

within the energy constraint expression, Eqs. 4 and 5, ordinarily have

the meaning of physical energy (power, brightness, intensity, etc. or

their spectral counterparts), we do not refer to these physical

energies in the phrase "energy-fluctuation." Rather, it is our artifi-

cial analogy with the ubiquitous quadratic energy form such as occurs

in the simple harmonic oscillator that permits us to call the entire

constraint term an "energy" in our analogy. It is the fluctuation of

of the entire term that is determined by Eq. 19.

If we write the measured quantities mk and the estimated quanti-

ties on the same grid as nk we may write Eq. 19 as follows. First we

write E noting that averages are done on nk but not on the given mk:

S= E-E [(n k - mk)2 - (k mk2(24)

k

. [ nk - k 2 (nk -ik) mk
k

We then must square and average to get

6E2 = k [nk - nk 2 -2 (nk n k) mk] 2 (25)

This complicated collection of higher moments can be simplified when

the statistical distribution of the estimated object (n) is known. For

example, if it is known to be negative-binomially distributed (see

Appendix B) the second moment may be calculated as

(7 = 1 +)2 (26)
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Higher moments for this and other distributions may thus be calculated

separately to simplify Eq. 24. Arbitrary definitions for the fluctua-

tion such as

-7
6E

or the root-mean-square fluctuation

E(27)

may be usefully employed as well to simplify the results.

D. THE BURG METHOD

The Burg, or one-dimensional Gaussian statistics ME method and

related algorithms has been shown to be equivalent to an all-pole net-

work model. These ideas have inflitrated estimation theory from the

discipline of control theory. Statistics other than Gaussian do not

necessarily produce all-pole solutions. There are those who hold that

if a process does not have such a network model representation, there

is no physical reality involved. (See Appendix B.)

In the one-dimensional Gaussian-Burg problem, as generally practiced,

a fixed nut..oer of autocorrelations or, alternatively, lags in the

temporal data string is chosen; this number is also the number of poles

that are determined in the spectrum. The location and magnitude of

these poles determine the position and strengths of the spectral peaks.

Where they fall, how close they are to pach other, and how strong they

are, are all the result of the calculation. In our formulation of the

Gaussian problem we choose the fineness of the mesh upon which the

estimates are constructed and upon which they are constrained to stand.

Only the strength of the estimates at these mesh points Is calculated.
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E. BAYESIAN INTERPRETATION OF THE ME METHOD

The Bayesian approach may be viewed as a method for computing the

conditional probability or probability distribution of a state of nature

(or a cause) given the measured data (or an effect). If we write P A(B)

for the conditional probability or probability distribution of B given

A, then Bayes' theorem may be written

P(B) P B(A)
PA(B y 

= P(A) (28)

In the ME problem we seek to determine the most probable object

given an image. That is, the maximum of P (Ob),

P(Ob) Pob(1)

P ( Ob ) = P(1) (29)

Now the probability distribution of images given an object P (1) is
ob

determined by the instrumental and transmission channel characteristics,

including noise, by the PSF for example. The probability distribution

of the images P(I) is a constant with respect to the maximization over

objects. Wernecke and D'Addario questioned the possible relationship

between the Bayesian or maximum a posteori probability method (MAP) and

ME, but commented that P(ob) was a stumbling block and that to use MAP

one must make a model for the statistics of the object P(ob). From our

point of view, the distribution P(Ob) is given by the physical statistics

of the problem. For example for photon signals, the Bose-Einstein

statistics apply (as discussed in Appendix B). With these identifica-

tions and interpretations, the maximization of P (Ob) for the most

probable object done in the ME method may be viewed as a maximization of

Bayes' equation, a MAP method.
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SECTION 4

EXAMPLES OF ME ESTIMATION

We illustrate the ME method with some examples of one- and two-

dimensional problems and modeling both Gaussian and Poisson statistics.

Although we conceived of these problems as photon imaging problems to

address the issue of imaging with thin, sparse arrays, it will be obvious

that by changing the names and meanings of the variables a wider variety

of problems is implicitly included.

A. ONE-DIMENSIONAL EXAMPLE

In the first example, a one-dimensional photon signal is received

by an array of antennas or apertures. The signal is supposedly known

to be the far-field radiation pattern of the unknown object and is the

mutual or partial coherence function; i.e., by the Zernike-Van Cittert

theorem, it is closely the Fourier transform of the unknown intensity

distribution pattern of the object. The array samples a small discrete

subset of object transform values and the ME method estimates the object.

The constraint energy term E in this example takes the squared difference

between the measured values and the estimated K transform values, cal-

culated from the estimated normalized object intensities {pi on a fine

mesh labeled i (1 i S i max):

k ^ ( measured )2

p1}J = ( p.Cos 27rf~" .xi - H (30)

p(k)

The spatial frequencies f(k) in the incoherent case are a measure of the

separation of pairs of elements in the array. The number of pairs K

will be less than the number of mesh points i max, so we will be asking

for a superresolution. We use a cosine transform here and create an

artificial extension of the object to make an even tunction. This was

done for convenience.
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Notice that we are constraining in transform space but estimating

in object space in this example. An additional constraint is

placed on the overall object intensity so we will estimate only the

relative shape of the object,

pi =1 (31)

The free energy times B becomes

= 6EIpJ + (p in , -, +1 1 pi (32)
i i

This function is to be minimized with the Lagrange multipliers B and X

for the two constraints. The minimum is obtained when

@E {pil
= Zn Pi - X + 6 - - 0 (33)

1 ap.

is satisfied for all p. This simultaneous set of equations to be solved

for Pi is treated by a special kind of iteration scheme.
2

We can guarantee the desired positivity of the 1pi} by writing it

as p o qi in our formulation. This is a natural way that does not

simply reject or set to zero negative values as sometimes reported in

other nonlinear schemes.

In this example we estimate Pi on a support of imax = 50 points.

We observe the first seven of fifty spatial frequencies. In our simula-

tion this would represent a potential seven-fold superresolution at

large values of a if the data allow it. To further illustrate the

possibilities of the method, the sixth of these seven spatial frequency

components was suppressed, simulating a particular sparse array. The

diffraction, band limited, or resolution limited object estimate (further

limited by the missing component) that was obtained by Fourier trans-

formation of the six components of given measured image data, is shown

in Figure 3.
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Figure 3. The diffraction-limited object estimate (Fourier transform of

the observed or measured image data) further degraded by one

missing Fourier component.
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A series of fifty dimensional estimates for the objects Ipil is

shown in Figure 4 for seven different values of B ranging from one-half

to 120. It can be seen that smaller values of B, representing a lower

known confidence in the accuracy of the data or equivalent by a lower

S/N, produce a smoother, flatter estimate, while large values of B pro-

duce sharper, more detailed estimates. The diffraction object estimate

falls somewhere between the curves for B = 1/2 and B = 1, but there

is no curve of definite B that can reproduce the diffraction pattern.

This behavior can be seen more clearly in Figure 5. A curious behavior

can be noted near the peak below J = 15 in Figure 4. The B = 120

estimate takes a slightly lower peak value and the entire peak struc-

ture moves slightly to the left. Why this is a free energetically

favorable situation is not obvious. This example is not a severe test

of the ME method as there is not much structural detail at the fineness

of the support of 50 points. The next example will show diffraction-

limited behavior more explicitly.

B. TWO-DIMENSIONAL EXAMPLES

In the two-dimensional example we now turn to, the energy constraint

is written entirely in the spaces of the object and the image, unlike

the previous example where it was written in the transform spaces, of

object and image. In these examples we use the Log B formulation of

ME appropriate for Gaussian amplitude or exponential intensity statistics.

We may imagine, in these examples, that the measured data are given

directly as an image in real space or that it has been transformed to

image space from measurements in Fourier space. The form of the con-

straint was described in Eq. 2. We chose a convolutional point spread

function of the measurement to be of the form

sin2  x sin2 (y-y )
xx (Y-y) 2
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Figure 4. A family of ME object estimates for several values of the
parameter P, compared with the diffraction object
est imate.
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Figure 6. Two-dimensional test object at the resolution
separation of the aperture.
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representing diffraction spreading by a limiting square aperture. The

scale of diffraction spreading was chosen to be a factor of four in

each dimension. That is, the number of independent variables needed to

completely describe the image was 4 x 4 = 16 times less than required to

describe the object from which it was mapped. The image can be com-

pletely and uniquely represented on a grid 4 x 4 times coarser than the

object.

In Figure 6 we show a two-dimensional test object of two isolated

spikes supported on single-grid locations separated by three empty grid

cells. Note that they are on a repeat period of four grid cells. The

heights of the spikes are in the ratio of 255 to 128, and the base of

the figure is unit height. The 4 x 4 times degraded diffraction-

limited image is shown in Figure 7 on an appropriately reduced coarse

support grid. If the two spikes of the object in Figure 6 were of the

same height, then the image in Figure 7 would be said to have "resolved"

the spikes according to Rayleigh's criterion, but as the spikes were of

different heights, they are just unresolved. For convenience, both of

visualization and of computation, the image is redrawn on the same fine

grid of the object in Figure 8. These interpolated image values are

redundant and contain no additional information. They are uniquely

determined by the values on the coarse grid in Figure 7.

The ME estimate of the object was made on a 20 x 20 section of

this image on the fine grid so the degree of superresolution of the

image was a factor of 4 x 4. The result for the case 6 = 104 is shown

in Figure 9. The two peaks are clearly resolved and some widening at

their bases can be seen.

The iteration process was terminated by testing for when the sum

of the absolute differences between the estimated values in two suc-

cessive iterations was less than or equal to 10- 5 , a number chosen

arlitrarily. Some arbitrary choice is needed to terminate the process

of ev,-r diminishing returns. At this test value the peak heights were

254 and 96. In the natural iteration method2 used in these examples,

the free energy necessarily decreases monotonically with iteration for
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Figure 7. Just unresolved image of the test object of
Figure 6.
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Figure 8. Fine mesh representation of the image in Figure 7.
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Figure 9. ME object estimate of the just unresolved image
of Figure 7 (or of Figure 8)
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all values. The test described above was found to decrease

exponentially but only for a below a certain value, depending on the

details of the problem. Above that B value, the convergence was

impractically slow and erratic. The Newton-Raphson method does not

guarantee convergence from an arbitrary initial guess and also fails to

converge for values of greater than a certain maximum value.

The second two-dimensional example we present is similar to the

previous one, except that here the image is derived from the test

object, shown in Figure 10, whose two spikes are at half the previous

separation, i.e., at half the resolution separation of the aperture.

The unresolved image is shown in Figure 11 on the appropriate coarse

grid. Figure 12 shows the fine mesh representation of that image. The
5ME estimate of the object is shown in Figure 13 for a = 10 . The

unresolved peaks in the image are now clearly resolved and the peak

values are 255 and 126. A saddle point of height 40 sits between the

peaks, and there is a slight width at their base. The displacement of

the peaks in this figure is merely a result of an improper plotting pro-

gram instruction and should be ignored.

The last two-dimensional example we present is constructed from

binary black and white alphabetical object shown in Figure 14(a), con-

structed on a 20 x 20 grid. The four by four-fold diffraction image

is seen in Figure 14(b). The 400-dimensional ME estimate of the object

7is shown in Figure 14(c) for the case of 6 = 10 . The convergence was

so slow and erratic at this high value of B that Figure 14(c) shows

rather unconverged results; that is, the fluctuations between successive

iterations were still large. However, the superresolution was achieved.

But the gray level or intensity values in the ME estimate are still

uncertain in Figure 14(c).
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I

Figure 10. Test object at half the resolution
separation of the aperture.
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/A

Figure 11. Unresolved image of the test object of Figure 10.
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Figure 12. Fine mesh representation of the image in figure 11.
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Figure 13. ME object estimate of the unresolved

image of Figure 11 (or Figure 12).
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SECTION 5

THE ME CONFIDENCE OR RELIABILITY ESTIMATE

When an object is estimated using the ME method, the question

naturally arises concerning how much confidence is to be olaced in the

estimate. In this section we describe the theoretical formulation for

the calculation of the confidence, and we give some examples for a

variety of measurement conditions.

A. THE THEORETICAL FORMULATION

The ME procedure finds the one pattern which maximizes the proba-

bility P of different patterns appearing as the object. The estimated

pattern object {ObJ designated by its set of normalized variables
(Pi }1. The variables {pi} are constrained to obey a set of subsidiary

conditions.

Near the maximum of the probability Pip (o)IP behaves quadratically

and we may assume it behaves as a multivariate Gaussian distribution.

We write symbolically,

I= P(o)1 exp[(pi (o)) (34)

where the {i } are the standard deviations of the estimate to be

calculated. This is illustrated in Figure 15 as though it were a

one-dimensional problem.

We will ultimately use the calculated {o i in determining the

confidence of the ME estimated values 1p(1 (}. A small 7, referring to

Figure 15, means that only the values of {p} nearly equal to !p(°) ,

have a high probability P{p}; thus we can rely on the estimate more

than if the {o} were large. More conventionally, we yould normalize

the probability to unit integrated volume ("area" in Figure 15) and

consider it to be a probability density function. Then at p(0) +1o},

the integrated area (twice the shaded area in Figure 15) would reprtsvnt
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il ,

Figure 15. Schematic one-dimensional illustration of the assumed
Gaussian behavior of P near its maximum. If P is
normalized it becomes the probability density
function and the integrated "area" becomes the
cumulative probability.

the probability that Ob{p} lies within the range {p(o)±.a}. In one

dimension The probability would be 0.68. We could say in that case

that the "confidence interval" p() +o has a "confidence coefficient"

of 68% and that the "confidence limits" we set are +1-0.

Our problem differs from the usual statistical problem in several

respects. In our problem both the mean, or more correctly, the most

probable fp01, are estimated as parameters and not measured as a

stochastic variable, and f} are also calculated rather than measured.

Furthermore we derive the actual probability distribution function P or

density function PD from the ME theoretical formulation, although we

approximate it by a Gaussian near its maximum. We have typically only

one (multidimensional) measurement from which we calculate both a
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(multidimensional) set of {pO} and one of {o} along with the probability

distribution of {p} as well. We could determine the exact shape of the

multivariate function Pfp} and we would not have to approximate it near

the maximum by a multivariate Gaussian, but the computational problem

is too large to make that option practical.

The schematic quasi one-dimensional drawing of Figure 15 can be

somewhat misleading, so we show in Figure 16 a two-dimensional Gaussian

distribution. The two-dimensional example is easily interpreted

geometricall v and is readily generalizable to the multidimensional case

of interest in this problem. in two dimensions,

P(p1,p2) = P(pl (o),p2( )) exp 1 2 1I..2.(35

(35)

1Pi--()-P (0) P2P2 ()

1 ))2 0 1 02 + \ 2 J

where is the correlation parameter that characterizes the stochastic

dependence between p1 and P2. Except when y, = 0, the axes of the

contour ellipses are not parallel to the coordinate system pl p2, and

the length of the axes of the ellipses depend on both {o and

Equation 35 can be normalized so that its two-dimensional integral is

unity to make a probability-density function:

I

PD(plp 2 ) 1 exp ias in (35) (36)

Curves of equal probability on planes parallel to the pP 2 plane are

ellipses on the P surface of Figure 16, as can he seen from the

exponent of Eq. 35. These ellipses may be projected onto the p I pI

plIne as sOiown in Figure 17.
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Figure 16. Distribution surface for a two-dimensional
normal distribution.
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Figure 17. Concentration ellipses of a

bivariate normal density.
These are contours of equal

probability P projected on

the pP 2 plane.
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The contour ellipses corresponding to Eq. 36 are of the form

o) (o ) (0) 2]

I-P -2 2+ P(-P PP -2=
_ 2 _ _ i 1  2 +, (37)

where C is a constant. It is always possible to make a linear

orthogonal transformation of the variables to a new set of variables

which are stochastically independent and normally distributed. In

effect, it is a rigid rotation of the coordinates to a new system where

the axes of the ellipse lie along the new coordinate axes q, (see

Figure 17). With the new correlation coefficient equal to zero, the

new variances are proportional to the axis lengths of the ellipse.q
The new equation of (the same) density function PD (36) can then

be written

and the contour ellipses corresponding to those of Eq. 37 can he written

2 2
q_ q2 2

2+ 2

q, q 2

This form is the sum of squares of two stochastically independent
2

variables and, therefore, has a y distribution with two degrees of

freedom. The probability that (ql,q 2 ) is inside the ellipse (Eq. 39)
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given by C2 , is therefore equal to the P-fractal of the cumulative
2

Xp distribution function for two degrees of freedom f,

2 2
q 2 2 (40)

2 +  (f=2) 
ql q 2

Equation 39 is exactly the same ellipse as before (Eq. 37), which was

expressed in terms of the correlated variables p. The only purpose

of the transformation here is to show the equivalence as a sum of

squares of independent variables. But there are other uses of the

transformation which we will describe below.

For three variables, (PI' P2' P3)
' the trivariate Gaussian distri-

bution p cannot be drawn, but we show in Figure 18 one three-dimensional

concentration ellipsoid represented in its rotated coordinates qi.

The lengths of the three principal axes fa. } are shown as well. The1

probability that a point is inside this particular ellipsoid is given
2

by the P-fractal of the cumulative Xp distribution function for f = 3

degrees of freedom. We have chosen C2 = X = I for Figure 18. Tables
2

of X show that the confidence level P here is 20%.

q3 10435 14

Figure 18. A concentration ellipsoid for the
trivariate Gaussian probability
distribution.
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in one sense, the relation (Eq. 40) or its multidimensional

equivalent for larger number of degrees of freedom, f, is a solution of

the problem of finding the confidence region for the ME estimates. The

{, I and {q} are calculated (or equivalently the {p} and {o}) for the
q

object estimate {p(O)} and, for a chosen confidence level, say P = 95%,

one can compute whether any given point {p}, which represents a multi-

dimensional estimate Oh{p}, lies within the hyperellipsoid given

by P. But a graphical or pictorial representation of this condition,

even in two-dimensional cases, is already problematical.

Consider a two-dimensional ME estimate where only two parameters

are being estimated, e.g., p1 and P2. Suppose they are to be repre-

sented graphically as in Figure 19(a) as the strengths of the vector

components (or the function) {pi1 . (Perhaps this would seem a more

reasonable procedure if we had a larger number than merely two.) In

Figure 19(a) suppose we attempt to show by two individual "error bars"

or confidence intervals, a confidence band attempting to represent

one of the accumulation ellipses of Figure 17, say for the 95%

confidence level P. This is replotted in Figure 19(b) around

(o) (o)
(pl(° , p2(  In 19(b) objects {piI are described by the coordinates

p, or the vector {p.} in two-dimensional space. Imagine a point going

around the circumference of that ellipse, its p1 and P2 values going

from maximum to minimum separately, but in a concerted fashion. If we

label the maximum values of p1 by 1 and p2 by 2 in Figure 19(b), we

can replot these points on the confidence intervals in Figure 19(a).

Notice that points outside the ellipse, such as points 4 or 5, are

still represented by points within these confidence intervals which

were determined by the maximum extent of the ellipse! By admitting

points such as 4 or 5 we have seemingly enlarged the confidence region

in a distorted way to include some portion of fractal regions, higher

than our chosen 95% value. Instead of the desired correct ellipse,

we have represented a circumscribed rectangle. There is no precise

way to represent the ellipse or hyperellipsoid in the fashion of

Figures 19(a) or 19(c) as confidence bands. An inscribed rec~angle

for example, instead of a circumscribed one, would indeed decrase, or

60



10435 -80

06

4
5

306
2

_P 2{Pi 3
-p21(0)

2
(a)

Figure 19(a). Graphical representation of
the two-dimensional, i.e.,
two parameter, estimates

Ip 1 (o), 2 (o)1 including
confidence intervals to make
a confidence band. Here
objects are described by
plotting the amplitude of the

components of {pi} considered
as a vector or a function.
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Figure 19(b). The accumulation ellipse and circumscribed

rectangle from which 19(a) is derived. Here

objects are described by points in multi-
dimensional (here two-dimensional) space

with coordinates or vector position fp.
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Figure 19(c). Graphical representation of a multidimensional
estimate {p.l, including confidence band, as a
generalization of 19(a).
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perhaps even eliminate improperly included extraneous regions, but it

would cut out some of the ellipse as well.

We choose a graphical method which will at least cepresent the

ellipse or hyperellipsoid exactly. Yet it does not always provide

visual understanding of whether a given object estimate point in multi-

dimensional P space with coordinates {pi}, lies inside or outside a

particular accumulation hyperellipsoid by merely displaying confidence

bands laid out as one-dimensional graphs of the strength of the

components of the vector fp (o )) # {confidence intervall (except in
1

some interesting special cases).

The method we choose, following our present geometrical interpre-

tation, is to use the endpoints of the ellipse or hyperellipsoid, i.e.,

the lengths along the principal axes, rather than a circumscribed

rectangle as in tile example of Figure 19(b). For any desired ellipse,

these lengths, which are proportional to the variances ., calculated inq
rotated, uncorrelated q space, are then linearly projected onto p space

as components, to be used as confidence intervals. In Figure 20(a) we

show such a projection for the two-dimensional case.

The endpoint q, along the largest axis of largest q is projected(o) (1) , (0) (1) "
as [pl-P2 1 along the p1 axis and as [p 2 -p 2  1 aong tle

P2 axis. Similarly, the endpoint q2 of the smallest axis of -(42 is(0) (2) (0) (2) q
projected as p- (2) and [p2-P2 I In Figure 20(b) we plot

the amplitudes of the projected components as confidence intervals

separately for the largest and for the smallest axes. Note that, unlike

the method of Figure 19, we now have two separate confidence hands,

one associated with each of the two principal axes. In Figure 20(c) we

show the generalization to the multidimensional case of N estimates

or variables fpt I , l5,N. There are a set N different confidence

hands. Of-ten only one or only the first few are of any significant

magnitude, thereby greatly simplifying the problem of interpretation.

The scheme shown In Figure 20(c) is the one we adopt in this

report for our 49-dimensional study example. The geometric interpre-

tation discussed above has a well-known algebraic counterpart in tih
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with project ions of the endpoints of th5 major
and minor axes onto the p coordinate axes.
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determination of eigenvectors (or characteristic vectors) and the

associated eigenvalues (or characteristic values). The directions of

the principal axes of the concentration ellipsoids are specified by

direction cosines which are given by the components of the normalized

eigenvectors of a generalized variance or covariance matrix that

includes off-diagonal terms to account for correlations. Each eigen-

vector belongs to an eigenvalue, and the length of any principal axis,

for a [articular concentration ellipsoid, is proportional to the

square root of its associated eigenvalue.

It can be shown that the eigenvectors are orthogonal; therefore,

this method of principal-ixis transformation results in uncorrelated

variates whose variances are proportional to the axis lengths of any

specific concentration hyperellipsold. To display the confidence

limits on the original unrotated object estimate, we project these

axis lengths back to the original coordinate axes lp as illustrated

in Figure 20(c).

B. EXAMPLES

In our KF confidence examples we choose for measurement data

constraints, images in Fourier space derived from a standard test

object. That object consists of two spikes symmetrically disposed

on a support of 1-i49 at positions i=24 and i=26. The "images" in

Fourier space differ only in the aperture or bandwidth accepted for

their measurements. The scaled apertures were varied from an almost

tull aperture of 48 units, out of 49, giving almost enough resolution

to resolve the peaks, through 24, 12 and 6 units with approximately

an eight-fold maximum degration in resolution. This afforded

opportuni ties for as much as an eight-fold possible enhancement hy ME

siuperresolution. The gamut of inverse noise or fluctuation temperature

wasi 2 0 : 19. arger values of . did not converge. From all these

t-x;jmple.s studied, we will only present ten particular ones in this
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Figure 20(c). Thle multidimensional estimates, including the set ot
confidence hands, one from each principal axis ot t he
hperell-ipsoid, as a generalization of 20(b).
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report, chosen to illustrate the main results. A listing is given in

Table i. The ,1E calculations were done with the log B formulation in

the examples. This formulation used in these examples, it will be

recalled, is appropriate for signal statistics that are Gaussian in

complex amplitude or exponential in intensity.

Table I. Parameters for Computations

Potential Factor of Inverse Temperatures,
Aperture Size Superresolution log 2 '

6 8 0, 18

12 4 0, 8, 17

24 2 0, 16, 19

48 1 0, 18

The results are arranged in sets according to the aperture sizes

shown in Table 1. In each set two or more values of - are chosen for

examination. Heading each set there is a display of the ME estimates

for the given aperture, one estimate for every value of j. in the

gamut of -. The hidden line graphic displays sometimes, for clarity,

require a separate picture for the positive and the negative values ot

the function displayed. It should he noted that the discrete points

of thit' fuInctions are connected by straight lines often giving the

fuictions the appearance oi a set of triangular spikes. ThiS is is mere, l'

an arti fact of the representation.

The ME estimates for aperture size 6 and 20-<.218 are shown in

Figure 21. The estimated objects, Obi are plotted verticallv

vers i- i, with tile estimates for various values of placed one behind

tie other in a third dimension. [le base of the figure is zero. For

lhi, small aperture size, s operresoltt ion was not achieved, even at tL.

,I [c, t temperature that we could simulate corresponding to r = 2
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i4 = 26 are seen to be rising, however, along
13

t i liii inc 0it the central peak for i-values greater than 2

i i t~~i 1I1 ., te ME estimates we exhibit in this% report, have

"! 1t ~iiid to) h.t normalized to unit energy', power or area, so

t!,, I* "* "!I. .,4" idllednt" variab~les, which are f urthier constrained

inl LIC '1 !11k iW1 (A" L-. )aid previouslv). This normalization explains

to I i.' I ;-,t in the b)ackground wi th the fall inl the peak as tile

c-t inii t ctcd to not ii,)ormit V when .approaches zero.

I'!~ o- t li onor1 Ima I e i gcn v ec t ors o 0f thIIe c on f id en ce I I pcr ellip1)s o id

o r i nd uscrt ire =6 are shown in Figure 22(a) and 22(b). Since

thi, -suaVec(tors ire, all still normalized, in the figure t hey

rollresn aiv -pe rs lieccL. The imethoicd used is to p lot tilie anmplitutde of

he ;1slr -'ottpori(n ts of the eigenvector (or eigenfiinction) as a contin-

u ous I ,- rvI,,t , at ter tic', procedure illustrated in Figure 20 f-.r two dimen-

s ins 'li ci ne 1 VcL to rs are rank ordered according to the s e tio

t he iI- rissoc'iiiatuc c igenva lues , the greatest cal led the first and the last

CIl led the 49th. T[le hidden line plot hides all but the first of tile

negative peaks so we separately plot the positilve peaks uip in Fig-

tire 22(a) and tie negative peaks up in Figure 22(0). The approximate

zero level is halfway between the base and peaks. These eigenvectors

were then ncormal ized according to the square roots of their respectilye

e igenvaliies to form and scaled by' 7 The result for 49

d i nus icons 20o and aperture of 6 is shown in Fi gure 22(c). The

bas-e olf the f iguire represents minus one and the top mesa represents

ero 1-. The, vectors, composed of the slim of the MF estimates 'p. (o)

Ii a're shown in Figure 22(d) for our present case of

:ipe(rt Ire .- i z(- h and _2o1. 'Ie c (is e o) , minus 7 . s

h,,u io i it nl gilre 
2 2 (e) . the zerco of ' p. is the base of Ftigure 2 2(cd)

A 11d 2 . Fiue 22(d) ajnd 22 (e) are the iiidden-l inc versions ot the

It'p': 1It(' lipptl tInd lower cotnfidence li mi t's shownri in tice cat-1Iir

iilliltralt ive- (eximplIe g ivenl in1 Figiirc 2011) lore WJ7 I 0; Il'ic, r

iie i-, ,il d make p nepgat iye.
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Figure 22(a). Ortho-normal cigenve rtors pro t~ tkJ on pi-spile for
Iaperture size 6 and -2'. 1 os it iy pev s
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Figure 22(c). Eigenvectors rescaled and projected to p-spacc as,
1.05 fo. for aperture 6, t = 2'
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Figure 22(d). The ME estimates ip )f plus 1.05 F
for aperture 6, V120.
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Figure 22(e). The ME estimate I P i minus 1.05

for aperture 6, F= 20.
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The real probability density function PD for our problem would not

have any negative values of {pi}, but our multivariate Gaussian approxi-

2
mation has tails to infinity. For a large enough X , p. could become

negative. We note in Table 2 that the maximum value of /7 to avoid

this was found to vary from slightly over 1 to Nm as - varies from

small to large values. These are the values of 7 used in the
2

examples plotted here. Interpreted as X2 of 48 degrees of freedom,

these confidence limits would represent extremely small confidence

coefficients. Interpreted as for one degree of freedom, for the large

.- cases where all but one I1 are essentially zero, they represent

confidence coefficients of 70% to 84%. A possible explanation for this

upper hand of the range of multiplying factors, I- 17 2T for our

multivariate Gaussian approximate probability density function may lie

in the fact that we are dealing with the case of Gaussian statistics.

Our "log -" formulation used in these examples is appropriate for this

statistic. In the Gaussian case, = (T) 2 , but recall the

definition

1 7p-T

Thus for Gaussian statistics, T). Therefore in this case,

p = p - Po is already equal to zero. Any greater multiplier of c

will make p negative. This one-dimensional example may point the way

to a proper understanding of our empirical observation.

We see in Figures 22(c), (d), and (e) that the hyperellipsoid

accumulation is almost hyperspherical. There is no one o that is

remarkabl; greater than the others. The confidence region surrounds

the entire estimate almost uniformly. This will prove to be true for

all cases of small t-.

Reca I I ing that the are equal to thi square root oft the ei en-

v/ilu-et, we sete in Table 2 that the cases of i" = 2o, for any aperttr

size, all have an almost flat distribution of i., varying by, at most
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a factor of 2. This Cal) be Contrasted to other cases in thle table

fo r large r .- value-, where2 0nly One 39is si gni ficant and the others are

orders of magnitude smaller.

18Tme next example, st ill with aperture of- 6, has 2~ Thle

e igenvec tors are shown il nFi gores 23(a) and (b). For th is large

there are real11 \ oiiliv two signifii (nt a. wi th the s-econd more than

four timesi -sna I er than the first. This is evident in Figure 23,

at Plot il tie project ion of N7. The contribution to the

con i dent e hand is on Iv nea r two unresol 1ved peaks . The MREs -t inlmates

. %7 2 1 are shown in Figures 23(d) and (e).- Again, only, tin first

two ei1genvec tors aire activye and only on the two shoul1d(ers of t he two

o In res (IS ved p eaks.

increasing the aperture size to 12 we see in Fi gure 24 that lor

2,tilie ME1, estimates beg in to resolve thle two peaks; at 2

hext,% are tart more re-solved than demande J by thle Ray le igli cr iteCr ion.

Th is is a four-Ifoldi inc rease in tile resolution of this apertulre.

For this aperture of size 12 and 20the series of plots ,

Fi gores 25(a) through (f-) describe tile natuore of the coof i denct b ands.

VlI &' peks, are not resolved (F igore 25(f)) , and thle base represenits

o) . The conf idence bands, again as in thet previoos; 2o ae
ire derived Irom at liivperspliere as ll] the are- CIOSel V e(hItil (SVCe

ibic 2) the smial lest heing 3/4 of the largest.
8

F(ii I*~ nd 11)Cr t Iore- 12 , tie ralt 1 o oft t lVIe i rs t %,V a I

/ l (). .2). Tu swt mus t tons ider lothi. Fi gure 20(c) -lho%'- tlht,

re'I;It i ye t teig li; of ter aao ited elI gen1ve'Ctors- . 'f it- 1It (I

Fi gore .)( ) r, leeit.'i illne o e I tCc t oil tiet ton!t iteiiie lil t He

tst im~jife ,I pi Jii Ink eiin it- I firs! two rolws of hiyiire I l

ind (e) .i* 1rneiii of tlhe iueovdsn'e> cIt lilt- po'if ;on%

i 24 'In i iiu j 0, ws i e th tn Iwo ohjt-i t ,p iki,'; nil fhit I~ k I~ Ill.pi

I")., r iii.0It l i " h a o ( it- t l , w

o n t I iIIt 1. . Il/i( T- ll i l l(r I li
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Figure 25(c). Eigenvectors rescaled and projectecl to p-s pace as;
1.04 for aperture 12, 2'
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Figure 25(f). 'mi ME estimate .) (u) ifr apertuiire 12,
2, replicjated 49 t imCS.
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one eigenvector has any in! luence is shown in Figure 27(c) where tilt

base represent is Mi 1 ronL .Onh eSt I MI tes )i I en ill

Figures 27(d) and (e) show the effect o1 the first eige-nVt-Ctor in

putting a confidence hand at twice the estimated peak het I L, .

Mvl ,-stimates for the case of aperture size 24, or 20 - ')

are shown in Figure 28 from the rear, to better show that t he ML

estimates are beginning to resolve the two peaks when 26. It is
(o,)

clear i i t hi is revrse plot atha Lor sn' a 1- the es t i mtes pi tend

to a flat distrib ution )I unilorm height except for a small sing]e

unreso I ved peak. The !On idene L est imate is developed in Figures 29(a)

through (e) for tle ase = iThe spread in eigenvalues is . ] wl v

inc reas ing a,; the aperture enlarges. Here, for aperture 24, the t-trio

of , i s / 1.47, still showing that all the i are essent ial II

equa. IThis can be noted in Figure 29(c) , the base of which i ,at

minus one and the mesa top at zero. file upper and lower conf idence

bands are shown in Figures 29(d) and (e), respectively, witLi the ase>

set to zero level. The estimate itself -pi ( ° ) !p is shown separately

in Figure 29(f) with the base at zero level.

For the case v = 2 6, aperture 24, j ust before obv ions superresolu-

Lion, the confidence results are developed in Figures 30(a) through (e)

[lhe es t imate (o) is shown separately in Figure 30(f) with zero at

the base. Here the ratio of the first two is i /,,2 = 9.4, and tht.

I irs t two eigenvectors explain most of the variance as ,een in Fi g-

ine 30(c), where the base is eq,,aI to mlinUs one . The upper and lowe.-

bounds of the ccin fidence bands are seen in Figures 30(d) and (e).

For . 219 ; perture 24, see Figure 31. As might be expected,

a [most a LI tie variance is it] one 2 From Figure 31(c) we,

note th t tilt eonfi dence h;iiil will he large on]v at tilt' twe re'olvted

peak, as ,ee in Fl giires 31 (d ) and (e)

ie- I ina l exampl fto r an almost ful I aperture of 48 i , ii! e. i4 ,t ill,

in th i i t 1 asks no liut rreso l iii l h o tie ME method .i1id -veVelIs t'i,

ih.eiivior in an unc lo ied way. The P-1I1 ,t ima.tes p i licinsexes ,l
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Figure 27(d). The ME estimates fl)1 I9Ius v2 {cy.1 tor aperture 12,
217.L
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Figure 2 7(e)- The ME estimate fpjjo) minus 2 i} for
aperture 12, B 2 7.
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Figure 29(a). Ortho-normal elgenvectots projected on p-space for

aperture size 24 and 8=20. Positive peaks.
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Figure 29(b). Ortho-normal elgenvectors projected for p-space for
aperture size 24 and 8=20. Negative peaks.
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Figure 29(c). ElgenvectorS rescaled and projected to p-space as

105



10435-48

APERTURE = 24

- 20

49

EENVECTOR
RANK

Fi~ue 29d).The ME estimates {pi(o)j plus 1.04 11

Figre29().for aperture 24v 
20.
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Figure 29(e). The ME estimates i (1minus 1.04 1cA1for

aperture 24, V z0
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APERTURE - 24
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Figure 29(f). The ME estimate lpj (O) for aperture 24,
=2' , replicated 49 times.
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Figure 30(a). Ortho-flormal eigenv ectors projected on p-space for

aperture size 24 and a 26. positive peaks.
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Figure 30(b). Ortho-norml eigenvectors projected on p-space for

aperture siz e 24 and 26. Negative peaks.
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Figure 30(c). ElgenVeCtors rescaled and projecte(I

to p space as for avect'fll-

24, 26.
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APERTURE 24

Figure 30(f). The N esLimat )e . for aperture

size 24, f= replicated 49 times.
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Figure 31(a). Orthoflormal elgenvectors 
projected on p-space for

aperture size 24 and -219, positive peaks.

115



10430-40

APERTURE = 24

49

EIGEN VECTOR

RAN

Figure 31(b). Orthonormal eigeflvectors 
projected on p-space for

aperture size 24 and 5 219, negative peaks.
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Figu.re 31(c). EigenVeCtOrs rescaled and projeCted to19

p-space as Nf2O for apertture 24, i 2
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given in Figures 32(a) and (b) for the standard and reverse view,

respectively. In Figure 32(b) we see that the peaks are already

resolved at = 20. Even at this large aperture the total gamut of the

o . is only a factor of two, and all the eigenvectors contribute to1

explain the variance as can be seen in Figure 33(c). The bounds of the

confidence bands are shown in Figures 33(d) and (e), and the estimate

itself pi (o)1 is given in Figure 33(f).

The very last example, = 21, aperture of 48, is shown in the

series of Figure 34. In this extreme case the first o is more than two

thousand times larger than the second (see Table 2) and clearly

accounts for almost all the variance. The hyperellipsoid, in this as

in all the other high cases, is a "hyperneedle." In Figure 34(c) tile

projected components of this vector can be seen to lie exactly on tile

peaks of the object estimate, which have values almost exactly reaching

one half at the peaks (0.49866) and zero at the background (0.00006).

The upper and lower confidence bands are shown in Figures 34(d) and (e).

It should not be assumed, by way of generalization, that the

important eigenvectors will, in all cases, mimic the shape of the

estimate at high 3 values as seen in this example. In another example,

not illustrated here, with a one spike object, the important eigen-

vectors did cluster around the estimated spike, but had both symmetric

and antisymmetric forms whose large components did not necessarily

exactly coincide with the position of the object peak.
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Figure 33(a). Ortlionormfal eigenvectors projected on

p-space for aperture size 48 and 2.

Positive peaks.
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APERTURE =48

= 2A
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Figure 33(b). Orthonormal eigenvectors projected on
p-space for aperture size 48 and -2'.

Negative peaks.
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Figure 33(c). Eigenvectors rescaled and 
projected to

p-space as 1.03 {oiI for aperture 48,

= 20.
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Figure 33(e). The ME estimates i(0) minus 1.03 0i

for aperture 48,3 20.
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APERTURE 48

3=20

Figure 33(f). The ME estimates Ipi(o)1 
for aperture

size 48 and for ~,=20 replicated

49 times.
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Figure 34(a). Orthonormal eigeflvectors projected 
on

p-space for aperture size 
48 and B 20

positive peaks.
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Figure 34(b). Orthonormal eigenveCtors projected 
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p-space for aperture size 48 and $-218.

Negative peaks.
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Figure 34(c). Elgenvectors rescaled and projected to

p-space as J2{o } for aperture 48,
~218.
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SECTION 6

SUMILARY OF RESULTS

The work on the simulation of imaging with thinned, sparse, random

arrays, done in the first two years of this contract, was summarized

in the Annual Report, June 1979. In this section, we summarize the final

year's work on the ME method. We present a general view of maximum en-

tropy (ME) as a method to choose the most probable object estimate from

the set of all the possible objects consistent with the degraded measure-

ments. The probabilities are assigned in accord~ace with the physical

statistics of the problem at hand. The entropy is the logarithm of the

probability. We show that the two contending forms of entropy found in

the current literature, the "logB" and "BlogB" forms, are special cases

of a more general entropy based on quantum statistics. Our particular

formulation of the ME method can be expressed as an analogy to the thermo-

dynamical method of the minimization of the free energy. This analogy

allows a natural way to introduce the matter of fluctuations or noise

into the method. The problem of a complete theory of the fluctuations

still remains, awaiting a theory of the analogy to the specific heat.

Several examples of ,IE estimation, in one and two dimensions and

for varying values of noise parameter, were calculated and the results

are presented graphically. The limiting effects of noise on the

possibilities of superresolution are described.

A general method for assessing the degree of confidence in the

multidimensional ME estimates was developed. The ME tormulation we

developed provides a multidimensional probahility function for all

possible potential object estimates consistent with the measured-image

signal data. The most probable one is picked as the estimate. We

expand this distribution function near its maximum for simplicity, and

approximate it as a multivariate Gaussian distribution. By principal

axis transformations, we derive the variances and then project them
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back to the original space of the estimates as confidence bands. A

chi-square test in many dimensions is used as the basis of the confi-

dence est imate. A particular example was studied in some detail. Two

delta-funct ion spikes on a support of dimension 49, separated by one,

>11.11,, was Chosen as tile unknown test object. Various images were

derived by choos ing progressively smaller apertures to test the metihod

a s a function of superresolition and flu ctuation or noise temperature.

Manv variations were presented spanning a range of inverse fluctuation

or noise temperature from 20 to 219 and potential superresolution

factors of from one through eight.
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SECTION 7

PERSONNEL

Bernard H. Soffer was the program manager. The principal investigators

on the program described in this report were Bernard H. Soffer and

Rvoichi Kikuchi. Karen Olin made helpful contributions in computer

graphics.

Contributors to the earlier phase of the work are listed in the

Annual Report, ,June 1979, F49620-77-C-0052.
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SECTION 8

PAPERS RESULTING FROM AFOSR SUPPORT

Comments on "Spectral Estimation: An Impossibility?" B.H. Soffer

and Ryoichi Kikuchi, Proc. IEEE 67, 1672 (1979).

In preparation are: "Maximum Entropy Image Restoration II and

III, to be submitted to JOSA.
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Maximum entropy image restoration. I. The entropy expression

Ryoichi Kikuchi and B. H. Softer
Hughes Research Laboralonex Malibu. California 90263

(Received 3 July 1976; revision received II August 1977)

The two entropy expressions, logB and -E loE (where B is the local brightness of the object or its
spatial spectral power) used in maximum entropy (ME) image restoration, are derived as limiting cases of a
general entropy formula. The brightness B is represented by the n photons emitted from a small unit area of
the object and imaged in the receiver. These n photons can be distributed over z degrees of freedom in q(n.zI
different ways calculated by the Bose-Einstein statistics. The entropy to be maximized is interpreted, as in
the original definition of entropy by Boltzmann and Planck, as logq(n, z). This entropy expression reduces
to logEB and - B logB in the limits of n > z > I and n - z, respectively. When n is interpreted as an
average A over an ensemble, the above two criteria remain the same (with n replaced by f), and in addition
for the z = I case the logEB expression, used in ME spectral power estimation, is derived for h > z = 1.

1. INTRODUCTION different possible object patterns that can produce the
same given image pattern. This many-to-one mapping

The ideal of maximum entropy (ME) restoration has sm ie mg atr.Ti ayt-n apn
The dea ofmaxmumentopy ME)resoraionhas from object to image is an intrinsic property of any

appeared in various forms in the technical literature rea mestringe ts a finit pertu or
spaninga gmutof iscplins fom eisic pecral real measuring system that has a finite aperture or

spanning a gamut of disciplines from seismic spectral bandwidth and hence a point-spread function of nonzero

power estimation and prediction to astronomical image width. Another way of interpretiad this point is the fol-

restoration. The subject was recently reviewed,' and win. the i aton ntain in the ep r
an extensive bibliography was given. z  lowing. The information contained in the object pattern

is carried by photons through an optical system and is

The concept, as applied to the image-restoration recorded in the image. Information is lost in the opti-
problem, can be viewed as an attempt to find the radiant cal system, and our problem is to analyze the nature of
spatial power pattern of the object by maximizing the the optical communication channel, and then work out
entropy of the pattern subject to the image-data con- the restoration.
straints. However, the method has a weakness in its
very foundation. There are two schools of thought which The first interpretation leads directly to the second.
differ as to the form of the entropy to be maximized. Since there are many possible object patterns, we are
For convenience, we refer, in the remainder of this pa- faced with the problem of choosing one or the problem

per, to these two as the "logB" and the "- B log" of making a criterion for choosing one. The ME method.
schools. (Although the B is defined more fully below, as interpreted in the present paper, provides such a
B may be interpreted, for purposes of this introduction, criterion. It presupposes that a probability of occur-

as the brightness of the object or as its spatial spectral rence can be assigned to each possible pattern, and then
power.) In his pioneering work in spectral power esti- the ME method chooses the most probable pattern as the
mation for geophysical applications, Burgs used the IogB estimated, or restored, object pattern.
expression for the entropy, following directly from Shan- This second point of our interpretation of the ME re-
non s4 work. In the image-restoration field, Ponsonby' storation method may encounter resistance from some
and Wernecke and D'Addario also used the logB expres- readers. Thus we hastily add some explanation. The
sion. In a recent successful work on astronomical image word entropy is often interpreted either as the concept
restoration, Frieden e used the - B logB expression for form which thermodynamic equilibrium is presupposed
his entropy or as a measure of "randomness" (often without a strict

Since these two schools have been working indepen- definition of randomness). We do not invoke these con-
dently, the question arises as to which entropy expres- cepts; in the present paper, the word entropy is used in
sion is the correct one to use. This question was noted the sense of Boltzmann's definition and is defined as the
by Frieden t and Wernecke and D'Addario2 as a chalieng- logarithm of the probability. Since the logarithm is a
ing problem. The present paper is an effort to solve monotonic function of the argument, to find a maximum
this problem by demonstrating the conditions under which of the entropy is to find a maximum of the probability.
the logB and the - B logB expressions should be used.
We prove that these expressions are limiting casesd Based on these two fundamental concepts, we show in
ae moe genthera expressionsWe are liminy concthe present paper what the probability of finding an ob-
wt thre penrlexof res oraion (aremasy woered ject pattern is, and then we show under what conditions
with the problem of image restoration (as worked on,used is log or - B log. Insteadfor example, by Ponsonby,'5 Wernecke and of starting from Shannon's entropy expression, as Burg s

and Frieden"). However, our conclusions can be easily did, we go much further back. (Shannon's entropy is
translated into the spectral power estimation problem shown to be a special case in a later section.) Ve start
(worked on, for example, by Burg, 3 Radoski, Fougere (in Sec. II) with the probability of a brightness pattern
and Zawalick, 7 and Ulrychg). in an object (based on the Bose-Finstein statistics.

The present paper is based on two basic interpreta- which photons obey). This leads to the logB and - B logiB
tions of the ME restoration of an image. The first is distinction for certain special cases. The number of
that, when an image pattern is given, there are many degrees of freedom for the photons, a basic concept in
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Sec. II, is discussed separately and in detail in Sec. I1. macroscopically indistinguishable) arrangements occurs

The entropy used in Sec. II is perfectly authentic with the same a priori probability. This postulate,

and in keeping with Boltzmann's original concept; how- which corresponds to the "equal-weight" principle of
quantum mechanics that each eigenstate of the Hamilto-

ever,an is occupied with the same probability, is the basis
seen - f logf form of the entropy. To resolve the ques- mfntesstaisticl anaysisefsthi paer. the a

tions some readers may have concerning these formulas of the postical analysis of this paper. The equal-

a simple example of the multinomial expression applied weight postulate allows interpreting q as the weight fac-

to dice throwing is given in Sec. IV. The concepts of tor, or the degeneracy, for cell intensity n). Thus q,
is proportional to the probability that n, photons are dis-a priori probability and the familiar entropy formtruedorth dgesofreom

-. f ogfare xplinedin hat ecton.tributed over the z degrees of freedom.
-f logf are explained in that section.

The concept of the probability qj in Eq. (2. 1) can be
The dice example in Sec. IV leads to the next section, un ersoo y s e a of thowin dce. Sup-

in wichShanon' an Bug's ormlis arederved understood by a simple example of throwing dice. Sup-
in which Shannon's and Burg's formalism are derived pose we throw two dice and count the sum of the twoand interpreted. Section V presents the formulation numbers. The number of different ways the sum 5, for

based on the ensemble, which can be useful in accounting exmpe, ape iur bee th e om5bf-
for noise in the ME formulation. example, appears is four, because the possible combi-

nations are (1,4), (2,3), (3,2), and (4,1). We write this

I. PROBABILITY OF AN OBJECT PA'TITERN as q(5)= 4. The general expression for the number of
ways q(n) that the sum n appears is

We assume that the object of interest is a two-dimen-
sional distribution of photon sources in the far field. q(n) = 6 - 7 - n l (2.2)

The two-dimensional space in which the object is viewed For fair dice, the probability that the sum n appears is
is divided by a hypothetical rectangular mesh into equal proportional to q(n). Corresponding to what we said
square cells of area w z each. The choice of the size u, concerning Eq. (2. 1), the postulate for this example is
is arbitrary at this stage, but not without important con- that each of the four states (1,4), (2,3), (3,2), and (4, 1)
sequences, as will be discussed below, appears with the same a priori probability.

The number of photons coming from the jth object cell Different from q(n) for dice in Eq. (2. 2), the algebraic
(j = 1, 2,. . ) to the receiver in the observation time t expression for q,(n,) for photons in Eq. (2.1) contains
is written as the dimensionless quantity n,. (These pho- factorials. For the purely practical reason that in
tons may be emitted from the object or reflected from working mathematically with factorials, it is easier to
it.) The ultimate goal of the maximum entropy method first take the logarithm, we take the logarithm of q, in
we present in this paper is to -calculate the most probable Eq. (2. 1) and introduce an expression s,:
spatial pattern {n1 } for the object. To free the presenta-
tion from unessential complications, we assume that the s,(n,)lnq,(n,) . (2.3)

photons are quasimonochromatic with bandwidth A v. We do not yet call this quantity entropy because we wish
Further, it is assumed that the object is not colorful, to avoid invoking the connotations and misconceptions
which implies that all AP =A v. This simplifies the dis - sometimes associated with the word. We now examine
cussions of coherence volume9 and of the number of de- some limiting cases of Eqs. (2.1) and (2. 3).
grees of freedom for the photons. [A] When z = 1, Eqs. (2.1) and (2.3) give

A basic postulate of our analysis is that for each cell
there correspond z degrees of freedom for the photons q, = 1 and sj = 0 . (2.4)
detected from that cell. The value z is proportional to This is understandable because, when the number of de-
the area wa, the bandwidth A v, the aperture of the de-
tection apparatus, and the time interval t of observation. grees of freedom is unity, all t photons occupy the samedegree of freedom and, as photons are indistinguishable
However, we first le've the value of z unspecified, ex- from one another, the degeneracy is unity.
cept that it is a given positive integer and is constant.
The meaning and the value of z are discussed in detail (B] When 1 < z -<n,, it is easier to work with the
in the next section. logarithmic form s,(n,) because we can use Stirling's

The number n, of photons are arranged (distributed) approximation. Neglecting z/nj in the expansion, we

over the z degrees of freedom within the bandwidth A arrive at

with the condition that multiple occupancy in one degree sj = (z - 1) nn, - ln(z - 1)! (2.5)
of freedom is allowed because of the Bose nature of [C] When z -n, we again use Stirling's approxima-
photons. The number of macroscopically indistinguish- tion, neglect n,/z, and approximate Eq. (2.3) as
able ways q, that such an arrangement can be formed is
expressed by the combinatorial formula for Bose-Ein- s = lnz - n,(Inn, - 1) . (2.6)
stein statisticsio: This expression is exactly the classical (i.e., Maxwell-

q,(n,) = (nj+z - 1)( Boltzmann particle statistics) limit of Eq. (2.1) when
n) ! (Z - )1 (2. I) nj "particles" are distinguishable, in agreement with the

Each of these arrangements is a quantum -mechanical general property that in the limit of z >-p,, Bose statis-

state of the n, photons. We now postulate that each of tics approach classical statistics.

the q, different (microscopically distinguishable but We are interested in the entire object mad, of many
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cells, each of area u, 2. We ask the number of ways n1, use B, for brightness, rather than p because of the opin-
n,... photons come from the first, second,... cells, ion, sometimes heard, that the entropy is always of the

respectively, independently of each other. Then the en- form -p ip and never inp.) In each of these expres-
tire number of ways Q is the product of qj's In Eq. (2. 1) sions, an accurate value of z is not needed in finding
since each cell is independent: the distribution {p1 } that maximizes the entropy. What

is needed is the knowledge of the ratio n/z. The num-
Q(n1 , n&,... ) = lq 1 (nj) . (2.7) ber of photons n/z per degree of freedom (or per mode)

is a useful concept and is widely used in the statistics

We then see what the logarithm of Q looks like. In writ- of radiation. 
13

ing it, we introduce n for the total number of photons: One exception to which the n/z criterion so far cannot

(.) apply is case [A], in which z = 1. The analysis in this
(2.8) section says that case [A], to which the wave analy-

and define, for mathematical convenience, a normalized sis
3

.
7 ' initiated by Burg actually belongs, cannot be

classified either to the logB case or the - B logs case.
object pattern We return to this problem in Sec. V, in which we treat

pan 1 /n . (2.9) the problem based on a fixed value of the average of n
rather than n itself.

This introduction of the normalized p1 does not mean
that we are assuming pj to be independent of the total IH. NUMBER OF DEGREES OF FREEDOM
intensity of light n; when the object is illuminated by
another light source, for example, p, can vary as the heideaeof the nmeriof degrees of re z for
total illumination changes because reflectivity may not photons used in the previous section is basic in this pa-
be linear in intensity and uniform over the object. At per. Therefore we discuss the concept in detail in this
any rate, it is meaningful to talk about the relative local section. The z for photons emitted from an area wZ of
intensity p for a given illumination condition, and for a the object space and observed within time I can be de-

given recorded image. veloped in either real space or phase space.

The three limiting cases of S r-nQ are given below: In real space, first we consider the coherence volume
for a photon. In the longitudinal direction of propaga-

[A] When z=1, tion, this volume may be considered to have a coherence

Q = 1 and S = lnQ = 0 . (2.10) length I given by the coherence time T - 1/4 v multiplied
by the velocity of propagation c:

This means that the probability Q is independent of the i=CT . (3.1)
photon distribution {pj}, whatever {pJ} may be, and hence In the transverse direction, the coherent area a grows
all distributions {pl in the object space are equally like- by propagation to a large range R and i-s inversely pro-
ly! portional to the area of the source w2. Using an arbi-

(B] When I < z -<n,, Eq. (2.5) leads to trary cutoff for the acceptable degree of partial coher-
ence, we may write a simple expression for a from the

S = , s, =E[(z - 1)Inn - ln(z - )! +(z - 1) lnp, . Zernicke-van Cittert14 theorem in the far-field limit:
J

(2.11) a- R 2X/w" , (3.2)
[C I When z -n,, Eq. (2. 6) leads to where X is the wavelength of the photons. Again, note

S = s,=nln(z/.)-npJ,(hnt,-l) . (2.12) the dependence of a on the source, except for R2.

J I The coherence volume may be taken as the product of

Following Boltzmann" and Planck, 1 it is customary the coherence area a and coherence length 1:
to call the logarithm of the degeneracy (weight factor, Vh=CTi7=C 3 R/ivXAv . (3.3)
or probability) the entropy. Since the probability is
proportional to the number of ways a certain event oc- The coherence volume corresponds to one degre- .f

curs (when each way appears with the same a priori freedom for the photon; it is not possible to distinguish
probability), our S, which is the logarithm of the num- the photons by interference experiments, for example,
ber of ways, may also be called the entropy, in one degree of freedom or in one coherence volume.

In the "maximum entropy" algorithm for calculating Now we define z. Suppose we detect photons in a de-
the object distribution, z and the total intensity n are tection time 1. Ignoring the transverse coherence area
fixed numbers; therefore only the p-dependent terms in for a moment, we can say that we have detected these
Eqs. (2.11) and (2.12) are significant. When we exam- photons in tIT Z coherence lengths or degrees of free-
ine the p-dependent terms, we note that Eqs. (2.11) an dor. The number of degrees of freedom should also
and (2.12) contain ZIrp, and -Zp1np1 , respectively, depend upon the ratio of the area A of the detector aper-
The p, in these expressions is the normalized brightness ture to the coherence area a of a photon. This ratio
which we wrote as B in the introduction. Therefore it contributes a factor A/a in z, so z may be viewed as the
is legitimate to identlfy case [B] with the logB expres- number of times the coherence volume crO (which rep-
slon used in ME image-restoration studies"' and case resents a degree of freedom) is contained in the "detec-
[C] with the - B logB expression, (We deliberately tion volume" ctA:

1658 1. Opt. Soc. Am., Vol. 67, No. 12, December 1977 R. Kikuchi and H. H. Softer 165h

147



ctA = decreases as the super-resolution increases as A/a
S( ) < 1 (and in the same fashion as t/T < 1). Super-resolution

may be viewed as a special case of reconstructing fromWe may think of the number of degrees of freedom as under-sampled data. More general cases of undersam-

being made of two factors: a temporal one z, and a spa- ping of the aperture plane (e.g., sparse arrays of an-

tal (two-dimensionalarea) z,. Whenever either z, or z, tenna), which do not involve super-resolution a t all in

is less than unity, the photons detected are still indistin- the reconstruction, can also be handled.

guishable, so we round z. or z, up to one degree of free-

dom. ' We have used a simplified definition of the num- Throughout this discussion we have assumed rather
ber of degrees of freedom to avoid nonessential compli- ideal detection processes in which the photon distribu-
cations; we assume that simple reciprocal relations tion is closely mirrored by the distribution of photoelec-
hold between wa and a, and between A v and T, and that trons, or of exposed silver halide grains in photography.
all A P =A v. A detailed study of coherence volume with The accumulation of photons has been assumed to be pro-
more general partially coherent sources given in Ref. portional to time. Similarly, we have assumed that the
9 agrees with the qualitative presentation given here. number of collected photons is proportional to the de-

The number of degrees of freedom can also be repre- tector area A. When the efficiency ol photoelectron de-

sented in phase space. The phase space of the conjugate tection is less than unity, binomial custributions for the

variables, time, and frequency (bandwidth), is commonly probability of detection and nondetection alter the distri-

employed in communication and signal processing theory butions. 16 However, for the estimation of n and n 1z, it

Utilizing the sampling theorem, this phase space is usu- is sufficiently accurate to take the photoelectron distribu-

ally partitioned into equal unit area slices at equal time tion as a mirror of the photon distribution. 7 In fact, the

intervals representing one degree of freedom (z, = 1) per distribution devised by Mandell" for photoelectrons from

measurement in the sampling of a time series. Alter- rather different considerations is exactly the negative
binomial distribution which we also display for bosons.nately, it is partitioned into equal unit area slices at

equal frequency differences representing one degree Photographic detection is complicated by a threshold ef-

of freedom (z = 1) per measurement in the sampling of fect, but the effects of photon statistics have been theoreti-

a spectrum. cally shown'9 todisplay the characteristic boson "clumping"
effects with increasing n/z in the density versus expo-

Since it is not necessary to have these particular par- sure photographic characteristic curve, consistent with
titionings or to have only one degree of fieedom per the Bose distribution. The distortions of detection will
measurement (except for the satisfaction of the sampling rarely be so great as to alter the estimate of the magni-
theorem), measurements are not always made in that tude of n/z, which is all that is required here.
fashion. As we shall see, for example, in the observa- An absorption at the source or at the detector as well
tion of Poisson temporal processes, z, is necessarily as ortin the oureto it the cas ofgreaer han neas change in the illumination intensity (in the case of
greater than one. reflection) not only change the total intensity, but may

The two variables, spatial extent, and spatial frequen- also influence the statistics. If we have a priori knowl-
cy which are conjugate to each other, define additional edge of this, it could be taken into account to determine
dimensions of phase space besides the familiar time- a corrected n/z appropriate to the statistics before the
bandwidth dimensions. This geometrical phase space lossy process.
of space and reciprocal space has been used in studies is  Let us examine some examples which have different
to define the number of degrees of freedom in images. n/z values. If we had some a priori knowledge of the
This is our z, factor. We include in the image analysis photon frequency distribution function of the object, for
and estimation problem the previously neglected (in example, If we know that the radiation detected at the
image studies) z t to count the entire number of degrees frequency v was from a black body at a certain tempera-
of freedom in an object. Our previous definitions lead- treuencyen we com a the body-ktowncetin for
ing to the number of degrees of freedom (Eq. (3.4)! are ture T, then we could use the well-known relation for
simply a casting of phase space ideas in terms of coher- the average number of photons per mode (or per degree
ent volumes and detection volumes, of freedom) at thermal equilibrium n/ as a function ofT and v:

Several comments are in order. Changing the arbi- n/z =[exp(hvi/k7)- l ,- (3.6)
trary size w of the object space cells will have impor-
tant effects on the reconstruction and possibly even on where h is Planck's constant. A reduced value of n/z
the statistics. This is not a defect of the method, but Is employed when A/a< 1, as in super-resolution, or
rather one of its important assets. For example, mak- when t/T< 1 as mentioned before. As an illustration,
ing w smaller than the resolution limit set by the detec- suppose we were to restore an image of the sun, which
tion aperture A will result in "super-resolution." When is approximately a blackbody, the mean chromosphere
we make the object cell size wt smaller than a resolu- temperature of which could be taken closely at 6000 'K.
tion element to achieve super-resolution, z, remains at Using Eq. (3.6), we find that n/z ' 1 in the visible re-
its minimum value of one degree of freedom,' but the gion and that -B logB is the appropriate limiting form
number of photons decreases in proportion to w2. This of the entropy expression. For a solar image using
is an Important example of a case where the n/z ratio is wavelengths larger than 3 pm, n/z is greater than one,
not a constant determined by physical properties of the and the correct form would be logB. Since all the planets
source. The number of photons per degree of freedom have a very small n/z ratio in the visible and infrared
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regions, -BlogB is the appropriate entropy form to use number n,, and the other point of view based on the av-
for restoring their images. erage i,, we use yet another dice example in this sec-

tion.
Without this kind of blackbody a priori information,

we could still make independent measurements of z or Suppose we throw two dice many times and ask how
of the n/z ratio. A determination of source size, Av often the number n appears. Let the total number of
from the spectral line shape, and detector parameters throws be M, and the number of throws in which n ap-
will give z. The number of photons n is presumed mea- pear be Mr,. Then the probability that, out of the en-
surable. More conveniently, if the isotropic flux or the tire M throws, 2 appears tffz times, 3 appears Mf3
related brightness B (W m-2 steradi1 Hz-4is measured, times,..., is written
then A!

n~z=B(0c(12, (37 ~.... fUz) (,1ff)! (.,li3)! ...(o fi)

The factor of 2 is chosen for the case of unpolarized q(2)1i2q(3)m'3 ... q( 1 2)"i lz
brightness. This relation, of which the blackbody dis- a
tribution is a special case, can be seen to follow from E.f, = 1 , (4.1)
the definition of B and from Eqs. (3.2), (3.3), and (3.4),

providing l/T is simply Av. To this approximation we in which q(n) is the probability that n is found in one
may apply Eq. (3.7) to estimate n/z for nonthermal throw. The previous equation (2.2) is an example of
sources such as the many radio astronomical objects q(n) for a pair of fair dice.
where synchrotron radiation, for example, plays a When we throw the dice a very large number of times
dominant role. Equation (3.7) tells us that the bright (M > 1), the number of times n appears approaches
Double Cygnus A (3C 405) at 960 MHz has an enormous Mf,(n0 , where the set [f~oi} maximizes the probability
n/z - 100. Similarly, Centaurus A (CTA 59) at 178 function 5(f2,°, f3 _ . The common rnathemati-
MHz has a very large n/z - 104. The bright radio astro- cal procedure of finding a maximum of such a function
norical objects likewise have a large n/z, and the logB is to require derivatives of its logarithm to vanish. So
entropy expression is appropriate.20 Images of less we first form the logarithm using Stirling's approxima-
bright objects and at shorter wavelengths will dictate tion (which is permitted since M is a large number) as
the - B logB form. 12 12

For the optical astronomical objects Frieden worked S nP=M [ "f.lnf ,.+ f.ln(n)
with, we see n/z <I and hence - BlogB is the entropy
expression that Eq. (2.12) gives, which is in agreement +X(- f,)] .(4.2)

with Frieden's choice. The radio astronomical case of (
Wernecke satisfies the relation n - z > 1, and hence the The last terms, A( ), are written to satisfy the normal-
logB expression of Eq. (2.11) is the right entropy ex- ization offf., and X is the Lagrange multiplier. When
pression, which again supports Wernecke's choice, we maximize 8 in Eq. (4.2), we arrive at the most prob-

able distribution:
IV. EXAMPLE OF MANY THROWS OF DICE p

The main purpose of the present paper is to point out = q(n) 1  q(n) . (4.3)
the importance of the q,(nj) factor in Eq. (2. 1) in formu- Several comments are in order.
lating the entropy of the ME method. However, we must
still answer the legitimate question of why our initial
and fundamental entropy (2. 1) does not resemble the i the mult ,f 5 . !z expression inp(4.1)nisa teexprssin odinrilysee fo enropy naely- ~in the multinomial expression. The expansion can be
expression ordinarily seen for entropy, namely - Zf.Inf. written
or - ZpInp, where, for example, f, is the distribution
function and P, might be the probability. To answer this [q(2)+q(3)+... +q(12) m=FcP(f2 , f .. ,
question, we start with an example of counting the num- (4.4a)
bers on many throws of two dice. where the sum is done under the condition

In the existing logB school of ME spectral estimation, Mfg + Mf, +... + Mf4, = M (4. 4b)
for example, the basic assumption is that the measured
number of photons n can be taken as the estimate of the The multinomial expression n'(f 2 , f3 .. , f12 ) is used ex-
average number of photons i, in unit spectral width (or tensively in probability theory. 21

emitted from the ith cell of the object). This is differ- (i) The probability expression i( f2, (.f, 2 ) in
ent from the basic postulate of Sec. U that the number Eq. (4. 1) is based on .l throws of the dice. A collection
(not the average number) of photons of the ith cell is ni. of repetitions of an event is often called an ensemble.
When we say the average is ii, we are thinking of many Thus we can say f, represents the distribution of n over
cases with varying individual numbers. For example, an ensemble.
when two dice are thrown many times, the average of
the throws is 7, but individual throws can be distributed As we see in Eq. (4.3), the probability of a sintzle
between 2 and 12. To explain the relation between the throw q(n) is proportional to the distribution function
point of view of Sec. 11, which is based on one fixed over an ensemble. In the same way, any probability
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consideration (for example, the probability concept used density function. This definition implies the normaliza-
in Sec. 11) has the concept of an ensemble in its founda- tion for f,:
tion. Actually the probability can only be defined using
many tries [this is discussed in (iii) below]. However, . = I . (5.1)
when we use the term ensemble in the present paper, it
is defined in a limited sense, namely that the average The set {f,} specifies a particular state of the ensemble.
number of photons i is fixed in the ensemble, but that
individual n's in the individual facsimiles can fluctuate. We are interested in counting the number of different

ways, which we designate as P tf,, that an ensemble
(iii) For fair dice, we can write on q(n) of Eq. (4.3) can be constructed. P fd is made of two factors. The

as given in Eq. (2.2). However, if the dice are loaded, first is the number of ways of making a distribution If,}
the probability of finding n is not given by Eq. (2. 2), but over the ensemble:
can be a complicated function of n. Even in such a case, /
many throws (the limit of 1 - -) can yield the knowledge n AI/II (f4)! . (5.2)
of q(n) through Eq. (4. 3). In Sec. I, we used the quan-
tum nature of photons and accepted the formula for This corresponds to the combinatorial factor in Eq.
qj(n,) as given in Eq. (2. 1). (4. 1). The second factor comes from the fact that n

photons from a cell have the a priori weight or degen-
(iv) The reason why we give the dice example in this eracy factor q(n) as is represented in Eq. (2. 1):

section is to point out that the probability expression
(P(.fz,, .... fu) in (4. 1) is mtde of two factors. We will q(n) =(n +z- 1)!/n!(z -l)! (5.3)

call the combinatorial factor P1 and the rest (P,. It is Since each system can take its configuration indepen-
a common practice, which we do not follow in this paper, dently from the other systems in the ensemble, the sec-
to call ln(?, the entropy; nd,1 takes the familiar form ond factor Q(f,1 is a product of (5.3) for each system

IMP -f f, Inf.. (4.5) and is expressed

Qnfi=-.tJEnlnf, (5(4.5
The most probable distribution f,"' is derived not by a . (5.4)

maximizing only Inp in Eq. (4. 1) but by maximizing the The total number of ways that the distribution {rJ is
entire probability lndi + lnGP. in Eq. (4.2). Only in the achieved in the ensemble is then the product of the two
case in which 6) is a constant, independent of f., can the factors fZ{f.} in (5.2) and Q{f~l in (5.4):
most probable f * be derived by maximizing In(? alone.
This latter case will be discussed as a special case of Pjf.}= {f,}Q _f,} . (5.5a)
the development given in the next section. This P is of exactly the same nature as 41 in Sec. IV and

is a multinomial expression:
V. FORMULATION BASED ON THE AVERAGE fi V1 !

In Sec. If we mentioned under the classification [Al P(ff.= ( r )U ), . (5.5b)

that when z = 1 we cannot reconstruct the image using
the ME concept (and Burg's case belongs to this class). After we thus define the distribution {f.1 over the en-
This is because the probability of n, photons being emit- semble, we ask for the most probable distribution {ff W
ted from the fth cell is calculated using the qj(nj) ex- when the average n Is given as i. This distribution f "o}
pression of (2. 1). which is identically unity for one de- must be the one which maximizes the probability (degen-
gree of freedom. eracy, or the number of ways of constructing the ensem-
Even when z = 1, however, we can talk about the prob- ble) Ptfj1 in (5.5). Since it is convenient for mathema-Even when ticalhwevernwecan takiabout the prob

ability that n photons come from the cell If we have pre- tical reasons, we maximize inPtfi:
vious knowledge, by some means, of the distribution Sf.rlnPtf.}=lna[ f +lnQ{f} . (5.6)
function f.. Actually we do not need to know the entire
function 4, but it is sufficient to identify n, as an esti- One may call either InfPf{.} the entropy or the entire
mate of the average number i, of the distribution. When lfPf~ } the entropy. However, there is no such arbitrari-

we make this identification, we can derive the most ness when the maximum distribution {ffo } is to be de-

probable distribution f,1* and the probability of finding rived. The function to be maximized is not innl ft,
ii associated with f.'". Thus, we formulate the present which has the familiar - f Inf form of entropy, but the
section based on the distribution and on the concept of entire InPfj}, which includes the a priori terms. Since

the ensemble (in the sense we defined It in the previous the term "maximum entropy restoration" is in use, we

section). This treatment allows us to understand some will call the entire expression (5.6), InP+(.1, the en-

cases of the IogB school of the ME estimation method. tropy in this paper.

We consider an ensemble made of a large number M Using Stirling's approximation, we derive

of nearly identical facsimllesorsytems, each system
representing the single jth cell treated in Sec. II. The S14}/M fUflnf, - 1)- I flnq(n)

number of systems which have n photons each is written
fM. This function f. is not the so-called cumulative - (5.7)
distribution, and it is sometimes called the probability
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In anticipation of the maximization, we used Lagrange form that Burg used in his ME treatment. (The mathe-
multipliers A and g for the subsidiary conditions ex- matics is the same if we formulate for the spectral
pressed by Eq. (5. 1) and by analysis problem. ) Our derivation of (5.16) in this sec-

tion is similar to the method used in Shannon's theory'
l 4f . (5.8) of communication. In Shannon's treatment, the frequen-

cy of repetition of measurement is controlled by the
The most probable distribution f.O' is derived by max- sampling theorem; each measured sampled point there-

imizing (5.7) as fore corresponds to one degree of freedom, mode or

f e-"' (" + I)! state, and hence z = 1. Naturally, the Gaussian distri-
foe- n! (z - 1)! bution in complex amplitudes for the classical wave rep-

resentation or, equivalently, fOr the exponential dis-The normalization coefficient e"  is determined from Eq. tribution of photons plays the dominant role in the tradi-
(5. 1) as tional information theoretical exposition as the most

=f(n+ -1) ,,= 1 probable distribution, and for these cases our reasoning
,.0 n! (z - 1)! (1 - e- (5.10) supports Shannon's expression of information.

Because the combinatorial factor in (5.9) is thus of the In considering the distribution function f, in this treat-
expansion coefficients in (5. 10), the distribution in (5.9) ment, Shannon considers n to be a continuum variable.
is called the negative binomial distribution, 22 and (5. 10) We can easily check that, when summations over dis-
is its generating function. The other multiplier ;, is de- crete n used in deriving (5. 15) are changed into inte-
termined from (5.8) as grations over the continuum of n, we arrive at (5. 16)

rather than (5. 15). So far as our formulation is con-
n-z

4 =ln - . (5. la) cerned, this is equivalent to assuming i .1.n

In deriving the negative exponential distribution (5. 14),Substituting this in (5. 10) allows us to write ) as
we assumed that i is fixed. This procedure is equiva-

n+ (. lent to using the complex wave amplitude formulationz together with the assumption that the power (i.e., the

second moment) is given and deriving the Gaussian dis-Using these two expressions in (5.9g), we can write f~' tribution in complex amplitude as was done by many
explicitly as authors in communication, astronomical imaging, and

i ( (f (n+z -l)! geophysical applications.v:°'\ -'7/x ' z! '!( l)!(5.12z)
n!(z-l)! It is noteworthy that the distribution function (5.12)

When the entropy expression (5.7) is a maximum andf, for a general z (when more than one degree of freedom
is equal tof. °' in (5. 9), we can show, using Stirling's is involved in the considerations) can be derived from
approximation, that the entropy corresponding to the the z -1 case (5. 14). As an example, we derive the
most probable distribution is case for z = 2. The distribution function for this case is
stf °l/M=gi+x=(ii+z)ln(;i+z)-ii-zlnz . (5.13) derived using the property that the distributions in each

degree of freedom are independent and thus the joint

An entropy expression equivalent to (5.13) was derived probability is a sum of products of (5.14) in the convolu-
by Gamo2 3 for partially coherent light beams. tion form:

We examine the three limiting cases corresponding to f (oJ )2 (
those presented in Sec. H. 0

[Al When z = 1, the a priori probability q(n) in (5.3) By comparing this with (5. 12), we can verify that (5.17)
is the distribution f~0 in (5. 12) for the case z = 2 andreduces to unity so that the general entropy expression i. s in (5.10) and the ato f tech-

(5.7) simplifies to the first summation - Zf. lnf,; this nique,.iUsin be nd in generat io n f acto of
is the expression of the entropy used by Shannon in his nique, it can be found an general that, when a factors of
information theory. In this case, the most probable the exponential distribution (5.14) are convoluted, the
distribution (5.12) Is reduced to the exponential distri- negative binomial distribution (5. 12) results with the
bution 4 : mean of the resultant distribution equal to z times the

original average i in (5.14). This convolution is an-
") (5.14) other way of understanding the negative binomial distri-bution (5. 12) that arises when more than one degree of

and the entropy expression (5.13) becomes freedom is involved. This result also confirms the
legitimacy of the entropy expression ('5.6) in which both

S }/M = ( + 1) n(i+ 1)-i ln1 . (5.15) the 11 term and the Q term are included.

When i1, this further reduces to [BI When z , n, the entropy expression (5. 13), using

Stf,1}/.tm = 1 + Ini . (5.16) Stirling's approximation, reduces to

This equation is the classical wave (field) limit of the Stf °'}/M a n + z - z Inz . (5. 18)
entropy expression for the Bose-Einstein statistics. This corresponds to the logB (In) entropy expression

The entropy expression in (5. 18) is equivalent to the (2. 5), recalling that z is a constant, and n is the vari-
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able. The other terms are merely additive cnstants. tency of our analysis. We will demonstrate that if the
[CI When z is large compared with n, we can use the exposure time of forming the image is very long, for

same approximation as we used in (2.6) and reduce f'*' example, the analysis of Sec. 11 (which is based on a
in (5.9) to fixed number of photons) and the analysis of Sec. V

(which is based on a fluctuating number of photons) agree
= e z'/n! . (5.19) with each other in the entropy expression as long as

Further, (5.11) reduces to n/z is the same in both.

=ln(z/fi) and )= ii. (5.20) We rewrite (2.1) for one cell as

From these two, we obtain s, = In (n +z -- 1)!(6.1)nc !(z,_ 1)! , .1

n(5.21) where we write nc and z, for n, and z, respectively, in

which is the Poisson distribution. The entropy expres- (2, 1), the subscript c indicates that these are quanti-
sion (5. 13) reduces to ties for a cell. The ensemble expression (5.13) is

S{j°*/M=iilnz -,i(lni- 1) . (5.22) written as it is:

This corresponds to the - B logB expression in (2.6), S=.M (+z)In(+z)-inii-zlnz . (6.2)

again recalling that z is a constant and i is the variable. In comparing the two expressions, i, is the number of
Equation (5. 22) is the classical (i. e. , Maxwell-Boltz- photons detected from the cell of the area t- within a
mann) particle limit of the Bose statistics. certain specified detection volume V= ctA [Eq. (3.4)].

The Poisson distribution of photons in this limit is The quantity z, is the number of degrees of freedom as-

well-established experimentally. The derivation of the sociated with a photon coming from that cell. There is
Poisson distribution in this limit JCJ and the exponential no restriction on the values of n, and z_, except that
distribution in limit [A] supports the correctness of the they be non-negative integers. It is meaningful to ask

distributioneinelimitn[Aipsupports the correctness)ofFth

analysis in this section. Many authors have noted the about the relationship between (6. 1) and (6. 2). For
this purpose, let the detection volume V used in definingimportance of the Poisson distribution and have em-

ployed it for imaging6 and communication
z8 studies. z. in (6. 1) be equal to A! times the corresponding V

However, they did not derive it as a most probable dis- used in (6. 2). This introduces the correspondence

tribution under specific conditions as they did for the n,=MA and zc =Mz . (6.3)
Gaussian, but adopted the Poisson distribution ad hoc. Substituting (6.3) into (6. 1) brings s, exactly into the
The reason they"' could not so derive the Poisson dis- form (6.2) for S when we use the approximation
tribution is that they maximized only the lni{.f.} term,
leaving out the lnQfj term in (5. 6). In evaluating the Mz > 1 (6.4)
probability when f. is of the Poisson form, they again together with Stirling's approximation (which is justified
incorrectly used - Z f, logf, for the (logarithm of) prob- when M is very large). It is to be noted particularly
ability (which does not represent the total probability in
the Poisson case). However, R~nyi and McFadden2 7  that the limit of z > 1 in (6. 1) agrees with the case of

did each independently derive the Poisson distribution Z = 1 in (6. 2).

by maximizing the probability expression, which included
the appropriate a priori term, as we do in the present VII. FERMI STATISTICS
paper. Although they were interested only in the prop- The formulation in this paper has been based on pho-
erties of the probability of point processes, their ap- tons and the Bose-Einstein statistics. It is natural to
proach and result support our reasoning, ask about the case of the Fermi-Dirac statistics because

One objection to including the InQ{fJ term in the en- an image-restoration problem of a similar kind exists

tropy expression might be that such a definition would there (for example, in the field of electron microscopy).

not satisfy the intuitively motivated induction condition, For the Fermi case, we need modify Sec. II only
the third property ;or the measure of information postu- slightly. We again divide the object space into cells.
lated by Shannon: namely, that if an original choice is The number of electrons which have been emitted from
composed of several successive choices, then the mea- the jth cell withinthe observationtime I is written as n,.
sure of information should be expected to be the weighted The number of degrees of freedom corresponding to the
sum of the individual measures. 2 On examination, this cell is written as z. The number of ways q, that the n,
condition or axiom is meaningful only when the choices electrons can be distributed over the z degrees of free-
are, a priori, equally likely; it is not suitable when they dom is written by the binomial expansion coefficient
are not. When the choices are equally likely, the lnQ{Jf} (Fermi-Dirac statistics)
term in (5.6) is irrelevant and thus the -f logf form of
Shannon's information results. q, = z /(z - n,)! n1 ! , (7. la)

VI. RELATION BETWEEN THE TWO DERIVATIONS which replaces Eq. (2. 1). We can define the entropy
for the cell as we did in (2.3):

In Secs. n and V, we derived the entropy expressions = (7. lb)
for a cell and for an ensemble of cells, respectively.
By comparing the two results, we can show the consis- As in Sec. n, case [Al, z = 1, yields , 0. Different
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from previous sections, the restriction in the Fermi known intensity probability distribution Ip(f) to be de-
case is termined and writes the entropy nfD. This formulation

of the problem does not lead to a unique two-dimensional
pattern corresponding to a maximum of the entropy.

because of exclusion principle, and hence case [B] in Many patterns can be found, each of which satisfies the
Sec. II is of no concern. Corresponding to case [C], calculated distribution function corresponding to the
z "n,, the entropy expression for the entire object field maximum entropy.
becomes In the problem of maximum entropy image restora-

S= Es =nn(z/n) Ep,(lnP,-1) tion, on the other hand, the value of the intensity of each
I = cell over a two-dimensional space is given an assumed

fixed trial value. We ask in how many ways F the in-
where we define, as in (2. 8), tensity at the cell i can be formed by taking into account

-= C n, (7. 4a) the a priori degeneracy associated with the intensity at
the point and any ensemble contribution if appropriate.
The entropy is then derived as inr, for the cell i and
then summed over all cell positions over the two-dimen-

Since case [C] is the classical particle limit, it is natur- sional space. This is what we explained in Secs. HI and
al that the entropy expression (7.3) is exactly the same V. The entropy is then maximized and a unique two-
as that derived for the classical particle limit of the dimensional pattern is derived corresponding to it.
Bose case (2.12). The ensemble formulation can be The basic difference between the speckle pattern sta-
done as in Sec. V by replacing q(n) in (5.3) with the bi- tistics problem and the maximum entropy image prob-
nomial expression corresponding to (7. la). Again for lem is, therefore, that in the latter a unique pattern is
case [C], in which z ->, we arrive at the classical par- calculated corresponding to the maximum entropy,
ticle expression (5.22). whereas in the former a group of many patterns is derived

from the intensity distribution corresponding to the maxi-
ViH. DISCUSSION mum entropy of that problem. This difference leads to an-

In clarifying the concept of entropy discussed in pre- other important consequence with regard to the "smooth-
vious sections, it is important to comment on the entropy ness" and the "disorder" of the pattern when the entropy
as used in a class of problems that is similar to, but is maximized. Suppose one asks for the pattern corre-
distinctly different from, ours. In statistical mechanics sponding to the maximum of the entropy in the speckle
as well as in other fields, the entropy can always be statistics example. When (8. 1) is maximized with only
written far, where r is the number of microscopically the constraint that the average (I) of I is given (together
distinguishable different ways in which the macroscopic with the normalization constraint), thenthe result is that
configuration of the system can be arranged under given p(1) = (I) "'exp(- I/( I)). This means the local intensity
constraints defined in the problem, whatever the prob- (1) can take various different values and hence the actual
lem may be. This concept of entropy far is valid for a patterns are not "smooth." On the other hand, when the
state that has fluctuated away from the most probable entropy of the maximum entropy image-restoration
one as well as for the most probable one, and is a gen- problem is maximized with only the constraint that the
eralization of thermodynamic entropy that is defined only average intensity is given (p,'s are normalized), the
for the equilibrium state, local intensities p, (i indicating the ith cell location) are

constant and independent of i, resulting in a "smooth"When the problems are different, the entropies are flat pattern with the same intensity everywhere. Such

different. Sometimes confusions occur, however, when flat pattern in the speckle statistics would be expressed
expressions of entropy which resemble each other are p() = f (l - I) rather than the negative exponential distri-

used in different problems. We will discuss an example bution. This is only an illustration of the difference; it

that has caused confusion in understanding the maximum Is non to imply tha the dilwaysegiv
is not meant to imply that the one method always gives

entropy image-restoration problem. In treating speckle "smooth" and the other method "not smooth" results.
patterns formed by lasers, Dainty2 ' introduces the prob- Different constraints could reverse the situation. We
ability density function p(r) of light intensity 1, indepen- avoid discussing the poorly defined concept of "disorder"
dent of where in the pattern I exists, and writes the en- in the context of two-dimensional patterns. Disorder
tropy as should not be confused with the degree of smoothness,

S=-fp(1)lnp(1)dI . (8.1) as they are independent concepts.

The two problems compared in this section use the
This is the legitimate entropy function for his problem same basic concept of the entropy lnr, but the way the
when no contribution from the a priori probability is as- maximum entropy behaves seems quite different; this
sumed. But the question he is trying to answer is dif- is only because the prokilems are different.
ferent from ours and hence the physical content of the
entropy expression (8. 1) is different from ours. IX. SUMMARY AND CONCLUSION
. In the speckle pattern statistics, in deriving (8. 1) one In the maximum entropy (ME) image-restoration for-

calculates the number of ways r, that all the different mulation, there are two different expressions for entropy
spatial patterns can be formed consistent with the un- now in use; for short, we call them the logB and the
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B BlogE expressions (B being the local brightness of ~ A Zardecks, C belisle and J liures. CL,)iwrence and vuan-

the object, or the special spectral energy). In the turn Optics, edited by L Mandel) and I-. Wolf, Proc. ird
presnt aper wedeveop geeralfor forentopy Rochester Conl,. June 1972 iPlenum. \v% *oic. 1973)
preentpapr, e dvelp geerafom fr etroy 'R. W. Ditchburn, Light. 3rd ed. llnteracience .ew N)k

that should be used in the ME restoration method, and 196) p. 697. or G. R, Fo~lee. lIntroduction to Modern
classify the conditions under which the above two ex- Optics (Holt Rinehart& Winston. NtA York. 196?1). p. 211.
pressions are valid. "Ludwig Boltzmann. Vorlesunger ut'er Gastheorie (J. A.

Barth. Leipzig-Part 1. 1896. Part 11, 1s9'o) translated by
We use the original definition of entropy by Boltzmann Stephen G Brush as Lectures in Gas Theor 0tniversity of

and Planckt, and find the most probable object pattern California. Berkeley, 1969). See pp. 5off. 74ff and 371
(restricted by the measured image). In other words, the where Boltzmann refers to the propiortionality, beta('er
en~tropv to be maximized is the logarithm of the proba- entropy and the logarithm of the probabiiity of a state
bility that an object pattern occurs. r

t M. Planck, Theo- of Hteat Radiation. translated by X.
Masiua (Blakiston's. Philadelphia, 1914). Part 111, Chap. 1.

The object pattern is defined by the distribution of the The equation S =k logw, which is no% r-eferred to as Boltz-
nutwher of photons n, over the cells i = 1, 2,. . . in the mannas Principle, first appears in this A irK

object space. The probability [q,(n,)] mentioned in the 1
3See, for example. L. Mandel, in Progrers in )ptrs. cedte!

preceling paragraph is discussed in Sec. 11, and is by E. Wolf (North-Holland. Amai'rdain 19,,3. %,i1 1. 1.
bae nteBose-Einstein statistics, w~ich photons Mandel and E. Wolf. L'Cohereni.' Propjerties of Uptical

bed.I in the rinltotenme o asten Fields,. Rev. Mod. Phys, 37. 231 -Z817 I19ti The quantitN
obey, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ n Itizrprinlt h ubro astef 1 f is often referred to in these references snd else- here r

photons (in the ith object cell) can be distributed over z the literature as the degeneracy parameter of the radistior.
degrees of freedom: We deliberately avoid this usage to prevent a later semantic

(n, + Z-1 confusion,
q,(n1) n,! (Z -1) "J. Klauder and E. C. G. Sudarshan. f undao, ntals yuan

fum Optics (Benjamin. Ne% York. lb'.p i3in
Section III discusses in detail how z can be estimated. ]$See, for example, E. L. O'Neill. and 1. Asatura ')t~a

Based on this expression for qi(n1 ), Sec. H interprets Image Formation in Terms of F ntropy I iansfor mat ions.

the two entropy expressions as the two limiting cases: 16J. Ph :i. Soc. Japan 16. 301-301 19n1
[131 whenn, -z >1, logq,(n1 ) leads to the logE expres- 'M. Scully, in Quantum Optics Cours, XLII. edited by h. J

sion for the entropy, and [C I when z - n it leads to the Glauber (Academic. New York. 11469). p h2Off A sUCC.-nct

-B logB form of entropy. statement of the problem in terms of the coherent state
representation. See also Ref. 14.

The relation between the entropy s, logq1(n,) and the 17J. Perina, in Quantum Optics, edited 1,v S. M. Kay and A

entropy familiar in information theory is discussed in Maitland (Academic, New York. 1970'.

Sec. V, using the ensemble for which i,, an average 18L. Mandel, "Fluctuations of Photon Beanms: the D~istribution
ofthe Photo-Electrons, "Proc. Phvs. Soc. 75. 233-243 (1959).

over the ensemble, is specified rather than n,. With IS W. M. Rosenblum. 'Effect of Photon Distributions an
specified, the twodistinctions I and [Cl above remain Photographic Grain," J. Opt. Soc. Am. 58. 60-62 (19h)1i.

the same. The third case, [A], when i, >> z = I (the cur - "Calculated from data given in J Kraus, Radio AstronomN
rent applications of the ME method for power spectral 2(Mc-Graw-Hill. New York. 1966).
estimation belong to this limit) leads to the logE expres- 1

tR. von Mises. Mathematical Thcory, of Probahiliti and
sionwhe theensmbl forulaion s ued.Statistics (Academic, New York. 19641. Chap. IV. Sec 31 2,
sionwhe theensmbl forulaion s ued."The negative binomial distribution was first introduced by F

Eggenberger and G. P6lya, Zeuts. Ang. Math. Me-ch. 3. 271;
'B. R. Firieden. in Picture Processing and Digital Filtering, (1923). According to Mandel. it Aas first applied t., this

edited by T. S. Huang (Springer- Verlag. New York, 1975). problembyR, Firth, Z. Phvs. 48. 323(12) 50, :3i'~ 1142*).
2S. j. Wernecke and L. R. D'Addario. "Maximum Entropy 23H. Gamo, "Thermodynamic Entropy of Partiall'i C hevitot

Image Reconstruction," IEEE Trans. Computers C-26, 351 Light Beams,' J. Phys. Soc. Japan 19. 14.55-t9,l (E1;41.
(1977); S. J. Wernecke, "Two-Dimenslonai Maximum En- 24The exponential distribution is aometinies r.'fei i- to as !he-
tropy Reconstruction of Radio Brightness, 11 Radio Sci. (to be geometrical or the "pure B~ose- distributiont in; the literatur-
published). 25 See, for example, the extensive bibliography in Rtefs I and

IJ. P. Burg, project scientist. "Analytical Studies of Tech- 26 F. T. S. Yu, Optics and Information Theor, iWiley. Nc-A
niques for the Computation of High-Resolution Wavenumber York. 1976); M. Ross, Laser Receiiers (Wiley. .Nc N atk.
Spectra, " prepared by T. E. Barnard, Texas Instruments, 1966); T. E. Stern. "Some quantum E~ffects in Infornmationr
Advanced Array Research Special Report No. 9, Contract Channels," IRE Trans. Information Theory IT-6. 435-440'
No. F33657-68-C-0867, May 14, 1969. (1960); T. E. Stern, "Information Rates in Photon Channels

4C. E. Shannon and W. Weaver, The Mathematical Theory of and Photon Amplifi'rs, " IRE! Int. Convention Record, P'art
Communication (University of Illinois, Urbana. 1949). 4, 182-188 (1960); J, P. Gordon. 'Quantum Effec-ts in Comn-

5J. E. B. Ponsonby, "An Entropy Measure for Partially Po- munication Systems,." Proc. IRk 180, 1,4s 904(l 19(,2). Hi
larized Radiation and its Application to Estimating Radio Sky M. Oliver, "Thermal and Quantum Noise,'" Iioc. I-FF IF 53.
Polarization Distributions from Incomplete 'Aperture Syn- 436-454 (1965),
thesis' Data by the Maximum Entropy Method," Mon. Not. 27A. Rinyi, "on an Extrema! Property of the Poisson Process."
Roy, Astron. Soc. 168. 369-380 (1973). Ann, Inst. Stat, Math. 16, 129-133 (1964). J. A. McFadden.

613. R. Frieden and 0. C. Wells, "Restoring with Maximum "The Entropy of a Point Process.'" J. Soc. rintun' Appl.
Entropy III: Poisson Sources and Backgrounds, " J. Opt. Math. 13, 988-994 (1965).
Soc. Am. (to be published). 2

8 Shannon and Weaver. Ref, 4. p. 19.
IN. R. Radoski. P. F. Fougere and E. J. Zawalick. "A Compari1- 21 J. C. Dainty, Proceedings of the SPSf international Ciin

sonof Power Spectral Estimates andApplications of the Mxltum ference on Image Analysis and E-valuation, July 19-23, 197..
Entropy Method, " J. Geophy.. Res. S0, 619-625 (1975). Toronto, Canada; "The Statistics of Speckle Patterns' in

IT. Ulrych. "Maximum Entropy Power Spectrum of Long Progress in Optics, edited by F'.. Wolf (North-Holland.
Period Geomagnetic Reversals, " Nature 235, 218-219 (1972). Amsterdam, 1976), Vol. XIV
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Comments on "Spectral Estimation: An Impossibility?"

B. H. SOFFER A',t RYOICHI KIKUCHI

Abstract-Spectral estimation is possible from a finite portion of the
autocorrelation function, The ambiguity of a multiplicity ofpermissible
spectra all consistent with the data is the very reason why it is possible
because each possible spectrum has a different probability. Maximum
entropy estimation (MEE) picks the most probable one as the estimate.

In a recent letter I I , Nitzberg questioned the possibility of making
spectral estimates using only a portion of the autocorrelation function
of the data because of the ambiguity arising from the multiplicity of
possible spectra that are consistent with the data. Restricting the class
of spectra to a particular class of network models as Nitzberg would
suggest, or equivalently determining the appropriate underlying statistics
(e.g., the all-pole network model in estimation theory or equivalently
its underlying Gaussian statistics in complex amplitudes) 121 still would
leave the ambiguity of a multiplicity of possible spectra all compatible
with the given data. The multiplicity, however, is the very reason that
we can employ the tools of estimation theory. Estimation theory is
probabilistic and provides both an estimate and a degree of confidence
in the estimate.

MEE, f-sr example, chooses the most probable member of this set of
possibilities for the estimate 12). Entropy is defined in this context as
the logarithm of the probability that a spectrum occurs. The details of
this interpretation, which makes explicit the probabilistic foundation
of MEE, can be found in Reference (21.

Manscript received March 23, 1979. This work was supported by the
Air Force Office of Scientific Research under Contract F49620-77-C.
0052.

B. H. Soffer and R. Kikuchi are with Hughes Research Laboratories,
3011 Malibu Canyon Road, Malibu, CA 90265.
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but to clarity under what conditions is should be expelted that the
procedure will work well It is known that it, in truth, the network
generating the data is an all-zero network, MEM works less well than
other less easily Lmputed procedures If enough about the true
state of nature is knwn so that the ph)sics ot the problem predicts
troubles for MILM. do not use it It the physics ot the ptoblerti is

completely unknown. spectral estima,rin is irp,,ssible in the sense or
guaranteeing go-d etitrra':,,n st the spe..tra, density

It is historically o,;hious tha sni iki this latter conditon t task ui

kntwk ledge. the measured data ,joes gi c c.ttrsiderablt information abotu

the spectrumn This is because %.hen a truncated autocorrelation !tn,
tion is available, this can allow e'xact evaluation 4t sonie rnteriA , !
the spectrum Note that the ,uipur a spectrum analyzer is given b>
integrals of this form Speciftcally. wheri a random process is passed

Reply' by R. Nitz berg
2  through a filter, the output power P, is given by

Soffer and Kikucki state that spectral estination is possible. They P I So(-)Hifr 2 df I
recommend the MEM and justify the recommendation by stating the J_.
well-known property that the technique maximizes a particular integral
involving the pow~er spectrum (entropy) under the constraint that cer- where Se(f) is the input process and Htfl is the transter function or
taut other integrals involving the power spectrum are specified values the filter By Parceval's theorem, it is also given by
(the known sampled autocorrelation values). From the viewpoint of
modern statistical estimation theory, this particular estimator is one of P, =J Rx(r)Rn(r)dr
a nondenumerable set of possible estimators. Thus is should be clear i-
that the question of whether or not it is possible to estimate spectra
cannot refer to whether an estimator exists but whether it can be where Rx(r) and RnTrl are the autocorrelation functions ot the po-
shown that a particular one has some desirable property. cess and filter, respectively. It the filter imnpr!se response is ot finite

The usual estimation theory criterion for choosing a particular es- duration T, then Rn(r, is of duration 2TF. The situation stated is
timator is small error. Often, it is not known how to best select one that Rx(r) is known exactly for ri < 7I, When 2TF. is less than T'.
estimator from the set of all possible; and, in order to simplify the the integral in (2) can be evaluated exactly. For a spectrum anal> zer
problem, the set of estimators that is being considered is restricted. In application, this is approxiinately equivalent to the statement th'-
one sense. the restriction is arbitrary but in another it is not. The when the process is passed through a narrow-band filter tuned to a.
restriction is made to a set with tractable mathematical properties, center frequency, the fiter's power output can be determined as lone
Thus sometimes estimators are constrained to be linear functions of as the reciprocal of the f-iter bandwidth is larger than T, Thas
the data for no reason other than nonlinear functions are hard to though the detailed structure of the power spectrum cannot, in
analyze However, there are many well-known cases where the best general, be determined on the basis of the truncated autocorrelation
linear estimators have substantially larger error than the best estimator, function, the output of a spectrum analyzer can be computed when

This philosophy of estimation theory relates to MEM spectral estima- the spectrum analyzer's frequency resolution is not "excessive"
tion. It is agreed that MEM is an extremely valuable technique. Ex-
amples abound of the superiority of this technique compared to more Further Comments by B. H. Soffer and R. Kikuchi
conventional spectral estimation techniques. However, as with esti-
mators, does the MEM procedure always have small error? As shown We agree that it would be unreasonable to use the MEM when the

by Gutowski er al. 131. there are examples where MEM gives very bad physics of the problem is not known. When knowt, the concept Of the

results. A question of interest is, can it be predicted when (or if) MEM MEM is not nebulous. The MEM is not limited to the form introduced

is applicable? by Burg based on Gaussian statistics; other forms of entropy may be'

A main concern when using MEM should be that tme concept of dictated by the problem at hand [21,
maximizing entripy is extremely nebulous and it may not be a reason-
able criterion Spectral estimation by MEM is a restriction to a class of REFFREN cES
estimators with tractable mathematical properties just as is the afore- III R. Nitzberg, "Spectral estimation: An impossibility'" Proc. 11<1- f.
mentioned restriction to linear estimators. This restriction is clear vol. 67, pp. 437-438, Mar. 1979
when the MEM procedure (as shown by Vanden Bos 4 1 ) is recast into 12) R. Kikuchi and BI H. Soffer. 'Maximum entropy iniage res'oration
the all-pole network algorithm. He shows that MEM is equivalent o I. The entropy expression," J Opt. Soc A,'me,., vol. 6', pp Iis,

1665, Dec. 1977.
computing the M coefficients of an all-pole network that fits the known 131 R. R. Gutowski, E. A. Robinson. and S. Irettel, "Spectral estima
M values of the autocorrelation function. If the assumption of an M- tion: Fact or fiction," JEFF-E Trans. Geosri Plectron., vot. G;F 16,

pp. 80-84, Apr. 1978,pole network fit% the problem at hand, this is a reasonable procedure. 141 A. Vanden Dos, "Alternate interpretation of maximum enirops
If the assumption is totally unreasonable it should be discarded. It it spectral estimation." IEFE Trans. Inform Theorv, vol. II I "7. pp
is not known whether or not the assumption is reasonable, one should 493-494, July 197i.
be concerned and not adament that this is the "best" procedure. As 151 H. Akaike, "Fitting autoregressive models for prediction.- Inn
one example of this flexibility, even when a data stream of M points is Insr Math., vol. 21. pp. 243-247, 196q

obtained. so that an M puint autocorrelation function sequence can be
estimated, the number of feedback coefficients ot the all-polc network
(the number of autocorrelation values estimated) is often taken as
substantially less than Af In practice, there is not a unique MEM
estimated spectrum but many depending upon how many poles are
used in the estimating network. Other criteria are then imposed to
choose the preferred MEM spectrum 151.

To summarize the above, there are a nondenumerable number of
spectral estimators. Some of these can be phased in terms of networks
with poles aid zeroes. The restriction to estimation using the all-pole
network (equivalent to maximizing entropy) is made prinrarily to
simpliy the mathematics. This is an extremely valuable property The
aspect of simplification is emphasized not to denigrate the technique,

Manuscript received June 25, 1979.
R. Nitzherg is with General Electric Company, Syracuse, NY 1322 1.
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